Cauchy-Dirichlet problem in Morrey spaces for parabolic equations with discontinuous coefficients
Dian K. Palagachev; Maria A. Ragusa; Lubomira G. Softova
Bollettino dell'Unione Matematica Italiana (2003)
- Volume: 6-B, Issue: 3, page 667-683
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topPalagachev, Dian K., Ragusa, Maria A., and Softova, Lubomira G.. "Cauchy-Dirichlet problem in Morrey spaces for parabolic equations with discontinuous coefficients." Bollettino dell'Unione Matematica Italiana 6-B.3 (2003): 667-683. <http://eudml.org/doc/195716>.
@article{Palagachev2003,
abstract = {Let $Q_\{T\}$ be a cylinder in $\mathbb\{R\}^\{n+1\}$ and $x=(x',t)\in \mathbb\{R\}^\{n\}\times \mathbb\{R\}$. It is studied the Cauchy-Dirichlet problem for the uniformly parabolic operator $$ \begin\{cases\} u\_\{t\}-\sum\_\{i,j=1\}^\{n\}a^\{ij\}(x) D\_\{ij\}u=f(x) & \text\{q.o. in \} Q\_\{T\}, \\ u(x)=0 & \text\{su \} \partial Q\_\{T\}, \end\{cases\} $$ in the Morrey spaces $W^\{2,1\}_\{p,\lambda\}(Q_\{T\})$, $p\in (1, \infty)$, $\lambda\in (0, n+2)$, supposing the coefficients to belong to the class of functions with vanishing mean oscillation. There are obtained a priori estimates in Morrey spaces and Hölder regularity for the solution and its spatial derivatives.},
author = {Palagachev, Dian K., Ragusa, Maria A., Softova, Lubomira G.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {667-683},
publisher = {Unione Matematica Italiana},
title = {Cauchy-Dirichlet problem in Morrey spaces for parabolic equations with discontinuous coefficients},
url = {http://eudml.org/doc/195716},
volume = {6-B},
year = {2003},
}
TY - JOUR
AU - Palagachev, Dian K.
AU - Ragusa, Maria A.
AU - Softova, Lubomira G.
TI - Cauchy-Dirichlet problem in Morrey spaces for parabolic equations with discontinuous coefficients
JO - Bollettino dell'Unione Matematica Italiana
DA - 2003/10//
PB - Unione Matematica Italiana
VL - 6-B
IS - 3
SP - 667
EP - 683
AB - Let $Q_{T}$ be a cylinder in $\mathbb{R}^{n+1}$ and $x=(x',t)\in \mathbb{R}^{n}\times \mathbb{R}$. It is studied the Cauchy-Dirichlet problem for the uniformly parabolic operator $$ \begin{cases} u_{t}-\sum_{i,j=1}^{n}a^{ij}(x) D_{ij}u=f(x) & \text{q.o. in } Q_{T}, \\ u(x)=0 & \text{su } \partial Q_{T}, \end{cases} $$ in the Morrey spaces $W^{2,1}_{p,\lambda}(Q_{T})$, $p\in (1, \infty)$, $\lambda\in (0, n+2)$, supposing the coefficients to belong to the class of functions with vanishing mean oscillation. There are obtained a priori estimates in Morrey spaces and Hölder regularity for the solution and its spatial derivatives.
LA - eng
UR - http://eudml.org/doc/195716
ER -
References
top- ACQUISTAPACE, P., On BMO regularity for linear elliptic systems, Ann. Mat. Pura Appl., 161 (1992), 231-269. Zbl0802.35015MR1174819
- BRAMANTI, M., Commutators of integral operators with positive kernels, Le Matematiche, 49 (1994), 149-168. Zbl0840.42009MR1386370
- BRAMANTI, M.- CERUTTI, M. C., solvability for the Cauchy-Dirichlet problem for parabolic equations with VMO coefficients, Comm. in Partial Diff. Equations, 18 (1993), 1735-1763. Zbl0816.35045MR1239929
- CALDERÓN, A. P.- ZYGMUND, A., On the existence of certain singular integrals, Acta. Math., 88 (1952), 85-139. Zbl0047.10201MR52553
- CALDERÓN, A. P.- ZYGMUND, A., Singular integral operators and differential equations, Amer. J. Math., 79 (1957), 901-921. Zbl0081.33502MR100768
- CANNARSA, P., Second order nonvariational parabolic systems, Boll. Unione Mat. Ital., 18-C (1981), 291-315. Zbl0473.35043MR631584
- CHIARENZA, F.- FRASCA, M., Morrey spaces and Hardy-Littlewood maximal functions, Rend. Mat. Appl., 7 (1987), 273-279. Zbl0717.42023MR985999
- CHIARENZA, F.- FRASCA, M.- LONGO, P., Interior estimates for nondivergence elliptic equations with discontinuous coefficients, Ric. Mat., 40 (1991), 149-168. Zbl0772.35017MR1191890
- CHIARENZA, F.- FRASCA, M.- LONGO, P., solvability of the Dirichlet problem for nondivergence form elliptic equations with VMO coefficients, Trans. Amer. Math. Soc., 336 (1993), 841-853. Zbl0818.35023MR1088476
- DA PRATO, G., Spazi e loro proprietà, Ann. Mat. Pura Appl., 69 (1965), 383-392. Zbl0145.16207MR192330
- DI FAZIO, G.- PALAGACHEV, D. K.- RAGUSA, M. A., Global Morrey regularity of strong solutions to Dirichlet problem for elliptic equations with discontinuous coefficients, J. Funct. Anal., 166 (1999), 179-196. Zbl0942.35059MR1707751
- FABES, E. B.- RIVIÈRE, N., Singular integrals with mixed homogeneity, Studia Math., 27 (1966), 19-38. Zbl0161.32403MR209787
- GILBARG, D.- TRUDINGER, N. S., Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer-Verlag, Berlin, 1983. Zbl0562.35001MR737190
- GUGLIELMINO, F., Sulle equazioni paraboliche del secondo ordine di tipo non variazionale, Ann. Mat. Pura Appl.,65 (1964), 127-151. Zbl0141.29202MR186940
- JOHN, F.- NIRENBERG, L., On functions of bounded mean oscillation, Comm. Pure Appl. Math., 14 (1961), 415-426. Zbl0102.04302MR131498
- LADYZHENSKAYA, O. A.- SOLONNIKOV, V. A.- URAL'TSEVA, N. N., Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monographs, Vol. 23, Amer. Math. Soc., Providence, R.I.1968. Zbl0174.15403
- MAUGERI, A.- PALAGACHEV, D. K.- SOFTOVA, L. G., Elliptic and Parabolic Equations with Discontinuous Coefficients, Wiley-VCH, Berlin, 2000. Zbl0958.35002MR2260015
- PALAGACHEV, D. K.- RAGUSA, M. A.- SOFTOVA, L. G., Regular oblique derivative problem in Morrey spaces, Electr. J. Diff. Equations, 2000 (2000), No. 39, 1-17. Zbl1002.35033MR1764709
- PALAGACHEV, D.K.- SOFTOVA, L.G., Singular integral operators with mixed homogeneity in Morrey spacesC. R. Acad. Bulgare Sci., 54 (2001), No. 11, 11-16. Zbl0983.42008MR1878039
- SARASON, D., Functions of vanishing mean oscillation, Trans. Amer. Math. Soc., 207 (1975), 391-405. Zbl0319.42006MR377518
- SOFTOVA, L. G., Regular oblique derivative problem for linear parabolic equations with VMO principal coefficients, Manuscr. Math., 103, No. 2 (2000), 203-220. Zbl0963.35032MR1796316
- SOFTOVA, L. G., Morrey regularity of strong solutions to parabolic equations with VMO coefficients, C. R. Acad. Sci., Paris, Ser. I, Math., 333, No. 7 (2001), 635-640. Zbl0990.35035MR1868228
- SOFTOVA, L. G., Parabolic equations with VMO coefficients in Morrey spaces, Electr. J. Diff. Equations, 2001, No. 51 (2001), 1-25. Zbl1068.35517MR1846667
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.