Formazione di singolarità nel moto per curvatura media
Bollettino dell'Unione Matematica Italiana (2001)
- Volume: 4-B, Issue: 1, page 107-119
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topSinestrari, Carlo. "Formazione di singolarità nel moto per curvatura media." Bollettino dell'Unione Matematica Italiana 4-B.1 (2001): 107-119. <http://eudml.org/doc/195798>.
@article{Sinestrari2001,
author = {Sinestrari, Carlo},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {ita},
month = {2},
number = {1},
pages = {107-119},
publisher = {Unione Matematica Italiana},
title = {Formazione di singolarità nel moto per curvatura media},
url = {http://eudml.org/doc/195798},
volume = {4-B},
year = {2001},
}
TY - JOUR
AU - Sinestrari, Carlo
TI - Formazione di singolarità nel moto per curvatura media
JO - Bollettino dell'Unione Matematica Italiana
DA - 2001/2//
PB - Unione Matematica Italiana
VL - 4-B
IS - 1
SP - 107
EP - 119
LA - ita
UR - http://eudml.org/doc/195798
ER -
References
top- ABRESCH, U.- LANGER, J., The normalized curve shortening flow and homothetic solutions, J. Differential Geom., 23 (1986), 175-196. Zbl0592.53002MR845704
- ALTSCHULER, S.- ANGENENT, S. B.- GIGA, Y., Mean curvature flow through singularities for surfaces of rotation, J. Geom. Analysis, 5 (1995), 293-358. Zbl0847.58072MR1360824
- AMBROSIO, L., Geometric evolution problems, distance function and viscosity solutions, in «Calculus of variations and partial differential equations (Pisa, 1996)» (G. Buttazzo, A. Marino, M.K.V. Murthy eds.) Springer. Berlin, (2000). Zbl0956.35002MR1757696
- ANDREWS, B., Contraction of convex hypersurfaces in Riemannian spaces, J. Differential Geom., 39 (1994), 407-431. Zbl0797.53044MR1267897
- ANGENENT, S. B., On the formation of singularities in the curve shortening flow, J. Differential Geom., 33 (1991), 601-633. Zbl0731.53002MR1100205
- ANGENENT, S. B., Some recent results on mean curvature flow, in «Recent advances in partial differential equations (El Escorial, 1992)», RAM Res. Appl. Math., 30, Masson, Paris, 1994. Zbl0796.35068MR1266199
- ANGENENT, S. B.- VELAZQUEZ, J. J. L., Asymptotic shape of cusp singularities in curve shortening, Duke Math. J., 77, no. 1 (1995), 71-110. Zbl0829.35058MR1317628
- ANGENENT, S. B.- VELAZQUEZ, J. J. L., Degenerate neckpinches in mean curvature flow, J. Reine Angew. Math., 482 (1997), 15-66. Zbl0866.58055MR1427656
- BRAKKE, K. A., The motion of a surface by its mean curvature, Princeton University Press, Princeton (1978). Zbl0386.53047MR485012
- CHEN, Y. G.- GIGA, Y.- GOTO, S., Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geom., 33 (1991), 749-786. Zbl0696.35087MR1100211
- EELLS, J.- SAMPSON, J. H., Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86 (1964), 109-160. Zbl0122.40102MR164306
- EVANS, L. C.- SPRUCK, J., Motion of level sets by mean curvature, I, J. Differential Geom., 33 (1991), 635-681. Zbl0726.53029MR1100206
- EVANS, L. C.- SPRUCK, J., Motion of level sets by mean curvature, II, Trans. Amer. Math. Soc., 330 (1992), 321-332. Zbl0776.53005MR1068927
- GAGE, M.- HAMILTON, R. S., The heat equation shrinking convex plane curves, J. Differential Geom., 23 (1986), 69-96. Zbl0621.53001MR840401
- GRAYSON, M. A., The heat equation shrinks embedded plane curves to round points, J. Differential Geom., 26 (1987), 285-314. Zbl0667.53001MR906392
- GRAYSON, M. A., A short note on the evolution of a surface by its mean curvature, Duke Math. J., 58 (1989), 555-558. Zbl0677.53059MR1016434
- HAMILTON, R. S., Three-manifolds with positive Ricci curvature, J. Differential Geom., 17 (1982), 255-306. Zbl0504.53034MR664497
- HAMILTON, R. S., Harnack estimate for the mean curvature flow, J. Differential Geom., 41 (1995), 215-226. Zbl0827.53006MR1316556
- HAMILTON, R. S., Four-manifolds with positive isotropic curvature, Comm. Anal. Geom., 5 (1997), 1-92. Zbl0892.53018MR1456308
- HUISKEN, G., Flow by mean curvature of convex surfaces into spheres, J. Differential Geom., 20 (1984), 237-266. Zbl0556.53001MR772132
- HUISKEN, G., Asymptotic behaviour for singularities of the mean curvature flow, J. Differential Geom., 31 (1990), 285-299. Zbl0694.53005MR1030675
- HUISKEN, G., Local and global behaviour of hypersurfaces moving by mean curvature, Proceedings of Symposia in Pure Mathematics, 54 (1993), 175-191. Zbl0791.58090MR1216584
- HUISKEN, G., Evolution of hypersurfaces by their curvature in Riemannian manifolds. Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998). Doc. Math. (1998), 349-360. Zbl0912.53038MR1648085
- HUISKEN, G.- ILMANEN, T., The inverse mean curvature flow and the Riemannian Penrose inequality, in corso di stampa su J. Differential Geom. Zbl1055.53052MR1916951
- HUISKEN, G.- SINESTRARI, C., Mean curvature flow singularities for mean convex surfaces, Calc. Variations, 8 (1999), 1-14. Zbl0992.53052MR1666878
- HUISKEN, G.- SINESTRARI, C., Convexity estimates for mean curvature flow and singularities of mean convex surfaces, Acta Math., 183 (1999), 45-70. Zbl0992.53051MR1719551
- ILMANEN, T., Elliptic regularization and partial regularity for motion by mean curvature, Mem. Amer. Math. Soc., 108 (1994). Zbl0798.35066MR1196160
- SOUGANIDIS, P. E., Front propagation: theory and applications in: «Viscosity solutions and applications» (I. Capuzzo Dolcetta and P.L. Lions, Eds.), Springer-Verlag, Berlin (1997), 186-242. Zbl0882.35016MR1462703
- WHITE, B.The nature of singularities in mean curvature flow of mean-convex sets, preprint (1998). Zbl1027.53078MR1937202
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.