-boundedness for pseudodifferential operators with non-smooth symbols and applications
Gianluca Garello; Alessandro Morando
Bollettino dell'Unione Matematica Italiana (2005)
- Volume: 8-B, Issue: 2, page 461-503
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topGarello, Gianluca, and Morando, Alessandro. "$L^p$-boundedness for pseudodifferential operators with non-smooth symbols and applications." Bollettino dell'Unione Matematica Italiana 8-B.2 (2005): 461-503. <http://eudml.org/doc/195845>.
@article{Garello2005,
abstract = {Starting from a general formulation of the characterization by dyadic crowns of Sobolev spaces, the authors give a result of $L^\{p\}$ continuity for pseudodifferential operators whose symbol a(x,ξ) is non smooth with respect to x and whose derivatives with respect to ξ have a decay of order ρ with $0 < \rho \leq 1$. The algebra property for some classes of weighted Sobolev spaces is proved and an application to multi - quasi - elliptic semilinear equations is given.},
author = {Garello, Gianluca, Morando, Alessandro},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {461-503},
publisher = {Unione Matematica Italiana},
title = {$L^p$-boundedness for pseudodifferential operators with non-smooth symbols and applications},
url = {http://eudml.org/doc/195845},
volume = {8-B},
year = {2005},
}
TY - JOUR
AU - Garello, Gianluca
AU - Morando, Alessandro
TI - $L^p$-boundedness for pseudodifferential operators with non-smooth symbols and applications
JO - Bollettino dell'Unione Matematica Italiana
DA - 2005/6//
PB - Unione Matematica Italiana
VL - 8-B
IS - 2
SP - 461
EP - 503
AB - Starting from a general formulation of the characterization by dyadic crowns of Sobolev spaces, the authors give a result of $L^{p}$ continuity for pseudodifferential operators whose symbol a(x,ξ) is non smooth with respect to x and whose derivatives with respect to ξ have a decay of order ρ with $0 < \rho \leq 1$. The algebra property for some classes of weighted Sobolev spaces is proved and an application to multi - quasi - elliptic semilinear equations is given.
LA - eng
UR - http://eudml.org/doc/195845
ER -
References
top- BEALS, M. - REEDS, M. C., Microlocal regularity theorems for non smooth pseudodifferential operators and applications to non linear problems, Trans. Am. Math. Soc., 285 (1984), 159-184. Zbl0562.35093MR748836
- BOGGIATTO, P. - BUZANO, E. - RODINO, L., Global Hypoellipticity and Spectral Theory, Mathematical Research, Vol. 92, Akademie Verlag, Berlin, New York, 1996. Zbl0878.35001MR1435282
- BONY, J. M., Calcul simbolique et propagation des singularités pour les équations aux dérivées partielles non lineaires, Ann. Sc. Ec. Norm. Sup., 14 (1981), 161-205. Zbl0495.35024MR631751
- BONY, J. M. - CHEMIN, J. Y., Espaces fonctionnels associés au calcul de Weyl-Hörmander, Bull. Soc. Math. France, 122 (1994), 77-118. Zbl0798.35172MR1259109
- CALDERÓN, A. P., Intermediate spaces and interpolation, the complex method, Studia Math., 24 (1964), 113-190. Zbl0204.13703MR167830
- COIFMAN, R. - MEYER, Y., Au delà des opérateurs pseudo-differentiels, Astérisque57, Soc. Math. France, 1978. Zbl0483.35082MR518170
- EGOROV, Y. V. - SCHULZE, B. W., Pseudo-differential operators, singularities, applications, Operator Theory: Advances and Applications, 93, Birkhäuser Verlag, Basel, 1997. Zbl0877.35141MR1443430
- FEFFERMAN, C., bounds for pseudodifferential operators, Israel J. Math., 14 (1973), 413-417. Zbl0259.47045MR336453
- GARELLO, G., Generalized Sobolev algebras and regularity for solutions of multiquasi-elliptic semi linear equations, Comm. in Appl. Analysis, 3 (4) (1999), 563-574. Zbl0933.35204MR1706710
- GARELLO, G., Pseudodifferential operators with symbols in weighted Sobolev spaces and regularity for non linear partial differential equations, Math. Nachr., 239-240 (2001), 62-79. Zbl1027.35170MR1905664
- GARELLO, G. - MORANDO, A., -bounded pseudodifferential operators and regularity for multi-quasi-elliptic equations, to appear in Integr. equ. oper. theory. Zbl1082.35175
- GINDIKIN, S. - VOLEVICH, L. R., The method of Newtons Polyhedron in the theory of partial differential equations, Coll. Mathematics and its Applications, Kluwer Academic Publishers, 1992. Zbl0779.35001MR1256484
- HELFFER, B., Théorie spectrale pour des opérateurs globalement elliptiques, Soc. Math. de France, Astérisque, 1984. Zbl0541.35002MR743094
- HÖRMANDER, L., The Weyl calculus of pseudodifferential operators, Comm. Pure Appl. Math., 32 (3) (1979), 359-443. Zbl0388.47032MR517939
- HÖRMANDER, L., The analysis of linear partial differential operators II. Differential operators with constant coefficients, Grundlehren der Mathematischen Wissenschaften, vol. 257, Springer-Verlag, Berlin, 1983. Zbl0521.35002MR705278
- LIZORKIN, P. I., -multipliers of Fourier integrals, Dokl. Akad. Nauk SSSR, 152 (1963), 808-811. Zbl0156.12902MR154057
- MARSCHALL, J., Pseudodifferential operators with non regular symbols of the class , Comm. in Part. Diff. Eq., 12 (8) (1987), 921-965. Zbl0621.47048MR891745
- MARSCHALL, J., Pseudo-differential operators with coefficients in Sobolev spaces, Trans. Amer. Math. Soc., 307 (1) (1988), 335-361. Zbl0679.35088
- SHUBIN, M. A., Pseudodifferential operators and spectral theory, Springer-Verlag, Berlin, 1987. Zbl0616.47040MR883081
- STEIN, E. M., Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J.1970. Zbl0207.13501MR290095
- TAYLOR, M. E., Pseudodifferential Operators, Princeton Univ. Press1981. Zbl0453.47026MR618463
- TAYLOR, M. E., Pseudodifferential operators and nonlinear PDE, Birkhäuser, Basel-Boston-Berlin, 1991. Zbl0746.35062MR1121019
- TRIEBEL, H., Interpolation theory, function spaces, differential operators, VEB, Berlin, 1977. Zbl0387.46033MR503903
- TRIEBEL, H., Theory of Function Spaces, Birkhäuser Verlag, Basel, Boston, Stuttgart, 1983. Zbl0763.46025MR781540
- TRIEBEL, H., General Function Spaces, I. Decomposition method, Math. Nachr., 79 (1977), 167-179. Zbl0374.46026MR628009
- TRIEBEL, H., General Function Spaces, II. Inequalities of Plancherel-Pólya- Nikol'skij type. -spaces of analytic functions; , J. Approximation Theory, 19 (1977), 154-175. Zbl0344.46062MR628147
- TRIEBEL, H., General Function Spaces, III. Spaces and , : basic properties, Anal. Math., 3 (3) (1977), 221-249. Zbl0374.46027MR628468
- TRIEBEL, H., General Function Spaces, IV. Spaces and , : special properties, Anal. Math., 3 (4) (1977), 299-315. Zbl0374.46028MR628469
- TRIEBEL, H., General Function Spaces, V. The spaces and the case , Math. Nachr., 87 (1979), 129-152. Zbl0414.46025MR536420
- WONG, M. W., An introduction to pseudo-differential operators, 2nd ed., World Scientific Publishing Co., Inc., River Edge, NJ, 1999. Zbl0753.35134MR1698573
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.