An analytic proof of numerical stability of Gaussian collocation for delay differential
Bollettino dell'Unione Matematica Italiana (2000)
- Volume: 3-B, Issue: 1, page 95-116
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topGuglielmi, Nicola. "An analytic proof of numerical stability of Gaussian collocation for delay differential." Bollettino dell'Unione Matematica Italiana 3-B.1 (2000): 95-116. <http://eudml.org/doc/195857>.
@article{Guglielmi2000,
author = {Guglielmi, Nicola},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {asymptotic stability; delay differential equations; Gaussian collocation methods; hypergeometric series; order stars},
language = {eng},
month = {2},
number = {1},
pages = {95-116},
publisher = {Unione Matematica Italiana},
title = {An analytic proof of numerical stability of Gaussian collocation for delay differential},
url = {http://eudml.org/doc/195857},
volume = {3-B},
year = {2000},
}
TY - JOUR
AU - Guglielmi, Nicola
TI - An analytic proof of numerical stability of Gaussian collocation for delay differential
JO - Bollettino dell'Unione Matematica Italiana
DA - 2000/2//
PB - Unione Matematica Italiana
VL - 3-B
IS - 1
SP - 95
EP - 116
LA - eng
KW - asymptotic stability; delay differential equations; Gaussian collocation methods; hypergeometric series; order stars
UR - http://eudml.org/doc/195857
ER -
References
top- BARWELL, V. K., Special stability problems for functional differential equations, BIT, 15 (1975), 130-135. Zbl0306.65044MR483577
- BELLMANN, R. and COOKE, K. L., Differential difference equations, Academic Press, New York, 1963. Zbl0105.06402MR147745
- BELLEN, A., One-step collocation for delay differential equations, J. Comput. Appl. Math., 10 (1984), 275-283. Zbl0538.65047MR755804
- DEKKER, K., KRAAIJEVANGER, J. F. B. M. and SPIJKER, M. N., The order of B-convergence of the Gaussian Runge-Kutta method, Computing, 36 (1986), 35-41. Zbl0565.65040MR832928
- GUGLIELMI and E. HAIRER, N., Order stars and stability for delay differential equations, Numer. Math., 83(3) (1999), 371-383. Zbl0937.65079MR1715581
- GUGLIELMI, N., On the asymptotic stability properties of Runge-Kutta methods for delay differential equations, Numer. Math., 77(4) (1997), 467-485. Zbl0885.65092MR1473392
- HAIRER, E., Constructive characterization of A-stable approximations to exp z and its connection with algebraically stable Runge-Kutta methods, Numer. Math, 39 (1982), 247-258. Zbl0493.65035MR669320
- HENRICI, P., Applied and Computational Complex Analysis, vol. 1, Wiley, New York, 1974. Zbl0313.30001MR372162
- HAIRER, E. and WANNER, G., Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, Springer Series in Computational Mathematics, 14, Springer-Verlag, Berlin, 2nd edition, 1996. Zbl0729.65051MR1439506
- ISERLES, A. and NØRSETT, S. P., Order Stars, Chapman & Hall, London, 1991. Zbl0743.65062
- KUANG, Y., Delay Differential Equations with Application in Population Dynamics, Academic Press, Boston, 1993. Zbl0777.34002MR1218880
- SLATER, L. J., Generalized hypergeometric functions, Cambridge University Press, Cambridge, 1966. Zbl0135.28101MR201688
- ZENNARO, M., On the P-stability of one-step collocation for delay differential equations, ISNM, 74 (1985), 334-343. Zbl0558.65054MR899103
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.