Sistemi iperbolici di leggi di conservazione
Bollettino dell'Unione Matematica Italiana (2000)
- Volume: 3-B, Issue: 3, page 635-656
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topBressan, Alberto. "Sistemi iperbolici di leggi di conservazione." Bollettino dell'Unione Matematica Italiana 3-B.3 (2000): 635-656. <http://eudml.org/doc/195859>.
@article{Bressan2000,
author = {Bressan, Alberto},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {survey article; uniqueness and stability of entropy weak solutions},
language = {ita},
month = {10},
number = {3},
pages = {635-656},
publisher = {Unione Matematica Italiana},
title = {Sistemi iperbolici di leggi di conservazione},
url = {http://eudml.org/doc/195859},
volume = {3-B},
year = {2000},
}
TY - JOUR
AU - Bressan, Alberto
TI - Sistemi iperbolici di leggi di conservazione
JO - Bollettino dell'Unione Matematica Italiana
DA - 2000/10//
PB - Unione Matematica Italiana
VL - 3-B
IS - 3
SP - 635
EP - 656
LA - ita
KW - survey article; uniqueness and stability of entropy weak solutions
UR - http://eudml.org/doc/195859
ER -
References
top- BAITI, P.- JENSSEN, H. K., On the front tracking algorithm, J. Math. Anal. Appl., 217 (1998), 395-404. Zbl0966.35078MR1492096
- BIANCHINI, S.- BRESSAN, A., BV estimates for a class of viscous hyperbolic systems, Indiana Univ. Math. J., in corso di stampa.
- BRESSAN, A., Contractive metrics for nonlinear hyperbolic systems, Indiana Univ. Math. J., 37 (1988), 409-421. Zbl0632.35041MR963510
- BRESSAN, A., Global solutions of systems of conservation laws by wave-front tracking, J. Math. Anal. Appl., 170 (1992), 414-432. Zbl0779.35067MR1188562
- BRESSAN, A., The unique limit of the Glimm scheme, Arch. Rational Mech. Anal., 130 (1995), 205-230. Zbl0835.35088MR1337114
- BRESSAN, A., Hyperbolic Systems of Conservation Laws. The One Dimensional Cauchy Problem, Oxford University Press, 2000. Zbl0997.35002MR1816648
- BRESSAN, A.- COLOMBO, R. M., The semigroup generated by conservation laws, Arch. Rational Mech. Anal., 133 (1995), 1-75. Zbl0849.35068MR1367356
- BRESSAN, A.- CRASTA, G.- PICCOLI, B., Well posedness of the Cauchy problem for systems of conservation laws, Amer. Math. Soc. Memoir, 694 (2000). Zbl0958.35001MR1686652
- BRESSAN, A.- GOATIN, P., Oleinik type estimates and uniqueness for conservation laws, J. Differential Equations, 156 (1999), 26-49. Zbl0990.35095MR1701818
- BRESSAN, A.- LEFLOCH, P., Uniqueness of weak solutions to hyperbolic systems of conservation laws, Arch. Rational Mech. Anal., 140 (1997), 301-317. Zbl0903.35039MR1489317
- BRESSAN, A.- LEWICKA, M., A uniqueness condition for hyperbolic systems of conservation laws, Discr. Cont. Dynam. Syst., in corso di stampa. Zbl1157.35421
- BRESSAN, A., LIU, T. P. - YANG, T., stability estimates for conservation laws, Arch. Rational Mech. Anal., 149 (1999), 1-22. Zbl0938.35093MR1723032
- CRANDALL, M., The semigroup approach to first-order quasilinear equations in several space variables, Israel J. Math., 12 (1972), 108-132. Zbl0246.35018MR316925
- DAFERMOS, C., Polygonal approximations of solutions of the initial value problem for a conservation law, J. Math. Anal. Appl., 38 (1972), 33-41. Zbl0233.35014MR303068
- DAFERMOS, C., Hyperbolic Conservation Laws in Continuum Physics, Springer-Verlag, 1999. Zbl0940.35002
- DIPERNA, R., Global existence of solutions to nonlinear hyperbolic systems of conservation laws, J. Differential Equations, 20 (1976), 187-212. Zbl0314.58010MR404872
- DIPERNA, R., Entropy and the uniqueness of solutions to hyperbolic conservation laws, in Nonlinear Evolution Equations (M. Crandall Ed.), Academic Press, New York (1978), 1-16. Zbl0469.35064MR513809
- DIPERNA, R., Uniqueness of solutions to hyperbolic conservation laws, Indiana Univ. Math. J., 28 (1979), 137-188. Zbl0409.35057MR523630
- DIPERNA, R., Convergence of approximate solutions to conservation laws, Arch. Rational Mech. Anal., 82 (1983), 27-70. Zbl0519.35054MR684413
- EVANS, L. C.- GARIEPY, R. F., Measure Theory and Fine Properties of Functions, C.R.C. Press, 1992. Zbl0804.28001MR1158660
- GLIMM, J., Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math., 18 (1965), 697-715. Zbl0141.28902MR194770
- HERRERO, M.- VELAZQUEZ, J., Generic behavior of one-dimensional blow-up patterns, Annali Scuola Norm. Sup. Pisa, Serie IV, 19 (1992), 381-450. Zbl0798.35081MR1205406
- JENSSEN, H. K., Blowup for systems of conservation laws, SIAM J. Math. Anal., in corso di stampa. Zbl0969.35091MR1752421
- JOHN, F., Formation of singularities in one-dimensional nonlinear wave propagation, Comm. Pure Appl. Math., 27 (1974), 377-405. Zbl0302.35064MR369934
- KRUZHKOV, S., First-order quasilinear equations with several space variables, Math. USSR Sb., 10 (1970), 217-273. Zbl0215.16203
- LAX, P. D., Hyperbolic systems of conservation laws II, Comm. Pure Appl. Math., 10 (1957), 537-566. Zbl0081.08803MR93653
- LEVEQUE, R., Numerical Methods for Conservation Laws, Lecture Notes in Math., Birkhäuser, 1990. Zbl0723.65067MR1077828
- LIU, T. P., Uniqueness of weak solutions of the Cauchy problem for general conservation laws, J. Differential Equations, 20 (1976), 369-388. Zbl0288.76031MR393871
- LIU, T. P., The deterministic version of the Glimm scheme, Comm. Math. Phys., 57 (1977), 135-148. Zbl0376.35042MR470508
- LIU, T. P.- YANG, T., stability of conservation laws with coinciding Hugoniot and characteristic curves, Indiana Univ. Math. J., 48 (1999), 237-247. Zbl0935.35090MR1722199
- LIU, T. P.- YANG, T., stability for systems of hyperbolic conservation laws, J. Amer. Math. Soc., 12 (1999), 729-774. Zbl0940.35136MR1646841
- MAJDA, A., Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Springer-Verlag, New York, 1984. Zbl0537.76001MR748308
- NATALINI, R., Recent results on hyperbolic relaxation problems, in Analysis of Systems of Conservation Laws (H. Freisthüler Ed.), Chapman & Hall/CRC, 1998, pp. 128-198. Zbl0940.35127
- OLEINIK, O., On the uniqueness of the generalized solution of the Cauchy problem for a nonlinear system of equations occurring in mechanics, Usp. Mat. Nauk., 12, (1957), 169-176. MR94543
- RAUCH, J., BV estimates fail for most quasilinear hyperbolic systems in dimension greater than one, Comm. Math. Phys., 106 (1986), 481-484. Zbl0619.35073MR859822
- RISEBRO, N. H., A front-tracking alternative to the random choice method, Proc. Amer. Math. Soc., 117 (1993), 1125-1139. Zbl0799.35153MR1120511
- SERRE, D., Systémes de Lois de Conservation, Diderot Editeur, 1996.
- SMOLLER, J., Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York, 1983. Zbl0508.35002MR688146
- VOLPERT, A. I., The spaces BV and quasilinear equations, Math. USSR Sbornik, 2 (1967), 225-267. Zbl0168.07402MR216338
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.