Entropy flux far from equilibrium in solids and in non viscous gases

M. S. Mongiovì; R. A. Peruzza

Bollettino dell'Unione Matematica Italiana (2004)

  • Volume: 7-B, Issue: 2, page 381-396
  • ISSN: 0392-4041

Abstract

top
One of the main question arising in Extended Thermodynamics concerns the physical meaning of the temperature far from equilibrium. Some authors define thermodynamic temperature T t h the inverse of the coefficient linking the entropy flux with the heat flux. Other authors, instead, define non-equilibrium temperature θ the inverse of the partial derivative of entropy with respect to energy, at density and heat flux constant. The aim of this paper is to determine the expression of entropy flux in some materials when phenomena far from equilibrium are considered, using the formulation of Extended Thermodynamics which uses the Lagrange multipliers, known as Rational Extended Thermodynamics. The case of thermal propagation that occurs in low-temperature crystals and the case of non viscous gases subject to heating are considered. It is shown that the non-equilibrium temperature and the thermodynamic temperature not agree, except near equilibrium, when second order terms in q i can be neglected. Approximate expressions for T t h and θ are determined in both cases.

How to cite

top

Mongiovì, M. S., and Peruzza, R. A.. "Entropy flux far from equilibrium in solids and in non viscous gases." Bollettino dell'Unione Matematica Italiana 7-B.2 (2004): 381-396. <http://eudml.org/doc/195879>.

@article{Mongiovì2004,
abstract = {One of the main question arising in Extended Thermodynamics concerns the physical meaning of the temperature far from equilibrium. Some authors define thermodynamic temperature $T_\{th\}$ the inverse of the coefficient linking the entropy flux with the heat flux. Other authors, instead, define non-equilibrium temperature $\theta$ the inverse of the partial derivative of entropy with respect to energy, at density and heat flux constant. The aim of this paper is to determine the expression of entropy flux in some materials when phenomena far from equilibrium are considered, using the formulation of Extended Thermodynamics which uses the Lagrange multipliers, known as Rational Extended Thermodynamics. The case of thermal propagation that occurs in low-temperature crystals and the case of non viscous gases subject to heating are considered. It is shown that the non-equilibrium temperature and the thermodynamic temperature not agree, except near equilibrium, when second order terms in $q_i$ can be neglected. Approximate expressions for $T_\{th\}$ and $\theta$ are determined in both cases.},
author = {Mongiovì, M. S., Peruzza, R. A.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {381-396},
publisher = {Unione Matematica Italiana},
title = {Entropy flux far from equilibrium in solids and in non viscous gases},
url = {http://eudml.org/doc/195879},
volume = {7-B},
year = {2004},
}

TY - JOUR
AU - Mongiovì, M. S.
AU - Peruzza, R. A.
TI - Entropy flux far from equilibrium in solids and in non viscous gases
JO - Bollettino dell'Unione Matematica Italiana
DA - 2004/6//
PB - Unione Matematica Italiana
VL - 7-B
IS - 2
SP - 381
EP - 396
AB - One of the main question arising in Extended Thermodynamics concerns the physical meaning of the temperature far from equilibrium. Some authors define thermodynamic temperature $T_{th}$ the inverse of the coefficient linking the entropy flux with the heat flux. Other authors, instead, define non-equilibrium temperature $\theta$ the inverse of the partial derivative of entropy with respect to energy, at density and heat flux constant. The aim of this paper is to determine the expression of entropy flux in some materials when phenomena far from equilibrium are considered, using the formulation of Extended Thermodynamics which uses the Lagrange multipliers, known as Rational Extended Thermodynamics. The case of thermal propagation that occurs in low-temperature crystals and the case of non viscous gases subject to heating are considered. It is shown that the non-equilibrium temperature and the thermodynamic temperature not agree, except near equilibrium, when second order terms in $q_i$ can be neglected. Approximate expressions for $T_{th}$ and $\theta$ are determined in both cases.
LA - eng
UR - http://eudml.org/doc/195879
ER -

References

top
  1. ANILE, A. M.- PENNISI, S.- SAMMARTINO, M., A thermodynamical approach to Eddington factors, J. Math. Phys., 32 (2), (1991), 544-550. Zbl0850.76881MR1088383
  2. AU, J.- MÜLLER, I.- RUGGERI, T., Temperature jumps at the boundary of a rarifield gas, Continuum Mech. Thermodyn., 12 (2000), 19-29. Zbl0943.76067MR1753004
  3. BARBERA, E.- MÜLLER, I.- SUGIYAMA, M., On the temperatures of a rarefieds gas in non-equilibrium, Meccanica, 34 (1999), 103-113. Zbl0964.76078
  4. CATTANEO, C., Sulla conduzione del calore, Atti Sem. Mat. Fis. Univ. Modena, 3 (1948), 83-101. Zbl0035.26203MR32898
  5. DOMINGUEZ-CASCANTE, R.- JOU, D., Entropy Flux and Absolute temperature in Extended Irreversible Thermodynamics, J. Non-Equilib. Thermodyn., 20 (1995), 263-273. Zbl0834.73008
  6. GRAD, H., Principles of the kinetic theory of gases, Handbuch der Physik XII, Thermodynamik der Gase, Springer-Verlag, Berlin (1958), 205-294. MR135535
  7. GUYER, R. A.- KRUMHANSL, J. A., Solution of the linearized phonon Boltzmann equation, Phys. Rev., 148 (2), (1966), 766-778. 
  8. GUYER, R. A.- KRUMHANSL, J. A., Thermal conductivity, second sound and phonon hydrodynamic phenomena in nonmetal crystals, Phys. Rev., 148 (2), (1966), 778-788. 
  9. JOU, D.- CASAS-VÁZQUEZ, J.- LEBON, G., Extended Irreversible Thermodynamics revisited (1988-1998), Rep. Prog. Phys., 62 (1999), 1035-1142. Zbl0852.73005MR1704603
  10. JOU, D.- CASAS-VÁZQUEZ, J.- LEBON, G., Extended Irreversible Thermodunamics, Springer-Verlag, Berlin (2001). Zbl0974.74003
  11. JOU, D.- CASAS-VÁZQUEZ, J., Possible experiment to check the reality of a nonequilibrium temperature, Phys. Rev. A, 45 (12), (1992), 8371-8373. 
  12. CASAS-VÁZQUEZ, J.- JOU, D., Nonequilibrium temperature versus local-equilibrium temperature, Phys. Rev. E, 49 (2) (1994), 1040-1048. 
  13. KREMER, G. M., On extended thermodynamics of ideal and real gases, Extended Thermodynamics Systems, Sieniutycz S. and Salamon P. editors, Taylor and Francis (1992), 140-182. 
  14. LIU, I., Method of Lagrange multipliers for exploitation of the entropy principle, Arch. Rat. Mech. Anal., 46 (1972), 131-148. Zbl0252.76003MR337164
  15. LIU, I.- MÜLLER, I., Extended Thermodynamics of classical and degenerate gases, Arch. Rat. Mech. Anal., 83 (4) (1983), 285-332. Zbl0554.76014MR714978
  16. MONGIOVÌ, M. S., Some considerations about Nonlinear Extended Thermodynamic Theories with different number of fields, J. Non-Equilib. Thermodyn., 24 (1999), 147-153. Zbl0954.74004
  17. MONGIOVÌ, M. S., Thermodynamic pressure in nonlinear nonequilibrium thermodynamics of dilute nonviscous gases, Phys. Rev. E, 63 (2001), 1-4. Zbl1042.82038
  18. MONGIOVÌ, M. S., Non-linear Non-viscous Hydrodynamical Models for Charge Transport in the framework of Extended Thermodynamic methods, Math. Comp. Modelling, 35 (2002), 813-820. Zbl0995.82513
  19. MONGIOVÌ, M. S., Nonlinear Extended Thermodynamics of a Diluite Nonviscous Gas, Math. Comp. Modelling, 36 (2002), 951-962. Zbl1029.80001MR1945051
  20. MÜLLER, I.- RUGGERI, T., Rational Extended Thermodynamics, Springer-Verlag, Berlin (1998). Zbl0895.00005MR1632151
  21. SMITH, G. F., On isotropic Integrity Bases, Arch.Rat.Mech.Anal., 18, (1965), 282-292. Zbl0129.00902MR173211
  22. RUGGERI, T.- MURACCHINI, A.- SECCIA, L., Continuum approach to Phonon Gas and Shape Changes of Second Sound via Shock Waves Theory, Il Nuovo Cimento D, 16 (1), (1994), 15-44. 
  23. VALENTI, A.- TORRISI, M.- LEBON, G., Shock Waves in Crystalline Dielettrics at Low Temperature, J. Phys.: Condens.Matter, 14 (2002), 3553-3564. 
  24. WANG, C. C., A new representation theorem for isotropic functions, Arch. Rat. Mech. Anal., 36 (1970), 166-197. Zbl0327.15030MR340303

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.