Periodic solutions of a nonlinear telegraph equation
Časopis pro pěstování matematiky (1965)
- Volume: 090, Issue: 3, page 273-289
- ISSN: 0528-2195
Access Full Article
topHow to cite
topHavlová, Jana. "Periodic solutions of a nonlinear telegraph equation." Časopis pro pěstování matematiky 090.3 (1965): 273-289. <http://eudml.org/doc/19590>.
@article{Havlová1965,
author = {Havlová, Jana},
journal = {Časopis pro pěstování matematiky},
keywords = {partial differential equations},
language = {eng},
number = {3},
pages = {273-289},
publisher = {Mathematical Institute of the Czechoslovak Academy of Sciences},
title = {Periodic solutions of a nonlinear telegraph equation},
url = {http://eudml.org/doc/19590},
volume = {090},
year = {1965},
}
TY - JOUR
AU - Havlová, Jana
TI - Periodic solutions of a nonlinear telegraph equation
JO - Časopis pro pěstování matematiky
PY - 1965
PB - Mathematical Institute of the Czechoslovak Academy of Sciences
VL - 090
IS - 3
SP - 273
EP - 289
LA - eng
KW - partial differential equations
UR - http://eudml.org/doc/19590
ER -
References
top- F. A. Ficken, B. A. Fleishman, Initial value problems and time-periodic solutions for a nonlinear wave equation, Comm. Pure Аppl. Math. 10 (1957), 331-356. (1957) Zbl0078.27602MR0092080
- G. Prodi, Soluzioni pеriodiche di equazioni a derivate parziali di tipo iperbolico nonlineari, Аnn. Mat. Pura Аppl. 42 (1956), 25-49. (1956) MR0089985
- G. N. Watson, А treatise on the theory of Вessel functions, Cambridge, at the University Press 1922. (1922)
- Л. B. Kaнmopoвuч, Г. П. Aкuлoв, Фyнкциoнaльный aнaлиз в нopмиpoвaнныx пpocтpaнcтвax, Гoc. Издaт. Физ. Maт. Лит., Mocквa 1959. (1959)
- O. A. Лaдыжeнcкaя, Cмeшaннaя зaдaчa для гипepбoличecкoгo ypaвнeния, Гoc. Издaт. Texн. Teopeт. Лит., Mocквa 1953. (1953)
Citations in EuDML Documents
top- Marie Kopáčková, On the weakly nonlinear wave equation involving a small parameter at the highest derivative
- Václav Vítek, Periodic solutions of a weakly nonlinear hyperbolic equation in and
- Jiří Neustupa, The uniform exponential stability and the uniform stability at constantly acting disturbances of a periodic solution of a wave equation
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.