Commutative monoids with zero-divisors
Bollettino dell'Unione Matematica Italiana (2002)
- Volume: 5-B, Issue: 3, page 773-788
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topRosales, J. C.. "Commutative monoids with zero-divisors." Bollettino dell'Unione Matematica Italiana 5-B.3 (2002): 773-788. <http://eudml.org/doc/195995>.
@article{Rosales2002,
abstract = {We describe algorithms for computing the nilradical and the zero-divisors of a finitely generated commutative $\emptyset$-monoid. These algorithms will be used for deciding if a given ideal of a finitely generated commutative $\emptyset$-monoid is prime, radical or primary.},
author = {Rosales, J. C.},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {zero-divisors; finitely generated commutative zero-monoids; algorithms; ideals},
language = {eng},
month = {10},
number = {3},
pages = {773-788},
publisher = {Unione Matematica Italiana},
title = {Commutative monoids with zero-divisors},
url = {http://eudml.org/doc/195995},
volume = {5-B},
year = {2002},
}
TY - JOUR
AU - Rosales, J. C.
TI - Commutative monoids with zero-divisors
JO - Bollettino dell'Unione Matematica Italiana
DA - 2002/10//
PB - Unione Matematica Italiana
VL - 5-B
IS - 3
SP - 773
EP - 788
AB - We describe algorithms for computing the nilradical and the zero-divisors of a finitely generated commutative $\emptyset$-monoid. These algorithms will be used for deciding if a given ideal of a finitely generated commutative $\emptyset$-monoid is prime, radical or primary.
LA - eng
KW - zero-divisors; finitely generated commutative zero-monoids; algorithms; ideals
UR - http://eudml.org/doc/195995
ER -
References
top- ANDERSON, D. D.- JOHNSON, E. W., Ideal Theory in commutative semigroups, Semigroup Forum, 30 (1984), 127-158. Zbl0533.20032MR760214
- ARNOLD, I., Ideale in kommutative Halbgruppen, Mat. Sb., 35 (1929), 401-408. JFM55.0681.03
- CHAPMAN, S. T.- KRAUSE, U.- OELJEKLAUS, E., Monoids determined by a homogeneus linear Diophantine equation and the half factorial property, to appear in J. Pure Appl. Algebra. Zbl1001.11012MR1775569
- CLIFFORD, A. H., Arithmetic and ideal theory of commutative semigroups, Ann. of Math., 39 (1938), 594-610. Zbl0019.19401MR1503427
- CLIFFORD, A. H.- PRESTON, G. B., The algebraic theory of semigroups, Amer. Math. Soc., Providence, 1961. Zbl0111.03403MR132791
- GEROLDINGER, A., On the structure and arithmetic of finitely primary monoids, Czech. Math. J., 46 (1996), 677-695. Zbl0879.20032MR1414602
- GILMER, R., Multiplicative ideal theory, Marcel Dekker, New York, 1972. Zbl0248.13001MR427289
- GILMER, R., Commutative semigroup rings, Chicago Lectures in Mathematics, 1984. Zbl0566.20050MR741678
- HALTER-KOCH, F., Ideal systems. An introduction to multiplicative ideal theory, Marcel Dekker Inc., 1998. Zbl0953.13001MR1828371
- LARSEN, M. D.- MCCARTHY, P. J., Multiplicative theory of ideals, Academic Press, New York and London, 1971. Zbl0237.13002MR414528
- LETTL, G., Subsemigroups of finitely generated groups with divisor-theory, Monatsh. Math., 106 (1988), 205-210. Zbl0671.20059MR971923
- RÉDEI, L., The theory of finitely generated commutative semigroups, Pergamon, Oxford-Edinburgh-New York, 1965. Zbl0133.27904MR188322
- ROSALES, J. C., Function minimum associated to a congruence on integral -tuple space, Semigroup Forum, 51 (1995), 87-95. Zbl0831.20081MR1337000
- ROSALES, J. C.- GARCÍA-SÁNCHEZ, P. A., Finitely generated commutative monoids, Nova Science Publishers, New York, 1999. Zbl0966.20028MR1694173
- TAMURA, T.- KIMURA, N., On decompositions of a commutative semigroup, Kodai Math. Sem. Rep., 1954, 109-112. Zbl0058.01503MR67106
- GRILLET, P. A., Semigroups. An introduction to the structure theory, Dekker, 1995. Zbl0874.20039MR1350793
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.