Commutative monoids with zero-divisors

J. C. Rosales

Bollettino dell'Unione Matematica Italiana (2002)

  • Volume: 5-B, Issue: 3, page 773-788
  • ISSN: 0392-4041

Abstract

top
We describe algorithms for computing the nilradical and the zero-divisors of a finitely generated commutative -monoid. These algorithms will be used for deciding if a given ideal of a finitely generated commutative -monoid is prime, radical or primary.

How to cite

top

Rosales, J. C.. "Commutative monoids with zero-divisors." Bollettino dell'Unione Matematica Italiana 5-B.3 (2002): 773-788. <http://eudml.org/doc/195995>.

@article{Rosales2002,
abstract = {We describe algorithms for computing the nilradical and the zero-divisors of a finitely generated commutative $\emptyset$-monoid. These algorithms will be used for deciding if a given ideal of a finitely generated commutative $\emptyset$-monoid is prime, radical or primary.},
author = {Rosales, J. C.},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {zero-divisors; finitely generated commutative zero-monoids; algorithms; ideals},
language = {eng},
month = {10},
number = {3},
pages = {773-788},
publisher = {Unione Matematica Italiana},
title = {Commutative monoids with zero-divisors},
url = {http://eudml.org/doc/195995},
volume = {5-B},
year = {2002},
}

TY - JOUR
AU - Rosales, J. C.
TI - Commutative monoids with zero-divisors
JO - Bollettino dell'Unione Matematica Italiana
DA - 2002/10//
PB - Unione Matematica Italiana
VL - 5-B
IS - 3
SP - 773
EP - 788
AB - We describe algorithms for computing the nilradical and the zero-divisors of a finitely generated commutative $\emptyset$-monoid. These algorithms will be used for deciding if a given ideal of a finitely generated commutative $\emptyset$-monoid is prime, radical or primary.
LA - eng
KW - zero-divisors; finitely generated commutative zero-monoids; algorithms; ideals
UR - http://eudml.org/doc/195995
ER -

References

top
  1. ANDERSON, D. D.- JOHNSON, E. W., Ideal Theory in commutative semigroups, Semigroup Forum, 30 (1984), 127-158. Zbl0533.20032MR760214
  2. ARNOLD, I., Ideale in kommutative Halbgruppen, Mat. Sb., 35 (1929), 401-408. JFM55.0681.03
  3. CHAPMAN, S. T.- KRAUSE, U.- OELJEKLAUS, E., Monoids determined by a homogeneus linear Diophantine equation and the half factorial property, to appear in J. Pure Appl. Algebra. Zbl1001.11012MR1775569
  4. CLIFFORD, A. H., Arithmetic and ideal theory of commutative semigroups, Ann. of Math., 39 (1938), 594-610. Zbl0019.19401MR1503427
  5. CLIFFORD, A. H.- PRESTON, G. B., The algebraic theory of semigroups, Amer. Math. Soc., Providence, 1961. Zbl0111.03403MR132791
  6. GEROLDINGER, A., On the structure and arithmetic of finitely primary monoids, Czech. Math. J., 46 (1996), 677-695. Zbl0879.20032MR1414602
  7. GILMER, R., Multiplicative ideal theory, Marcel Dekker, New York, 1972. Zbl0248.13001MR427289
  8. GILMER, R., Commutative semigroup rings, Chicago Lectures in Mathematics, 1984. Zbl0566.20050MR741678
  9. HALTER-KOCH, F., Ideal systems. An introduction to multiplicative ideal theory, Marcel Dekker Inc., 1998. Zbl0953.13001MR1828371
  10. LARSEN, M. D.- MCCARTHY, P. J., Multiplicative theory of ideals, Academic Press, New York and London, 1971. Zbl0237.13002MR414528
  11. LETTL, G., Subsemigroups of finitely generated groups with divisor-theory, Monatsh. Math., 106 (1988), 205-210. Zbl0671.20059MR971923
  12. RÉDEI, L., The theory of finitely generated commutative semigroups, Pergamon, Oxford-Edinburgh-New York, 1965. Zbl0133.27904MR188322
  13. ROSALES, J. C., Function minimum associated to a congruence on integral n -tuple space, Semigroup Forum, 51 (1995), 87-95. Zbl0831.20081MR1337000
  14. ROSALES, J. C.- GARCÍA-SÁNCHEZ, P. A., Finitely generated commutative monoids, Nova Science Publishers, New York, 1999. Zbl0966.20028MR1694173
  15. TAMURA, T.- KIMURA, N., On decompositions of a commutative semigroup, Kodai Math. Sem. Rep., 1954, 109-112. Zbl0058.01503MR67106
  16. GRILLET, P. A., Semigroups. An introduction to the structure theory, Dekker, 1995. Zbl0874.20039MR1350793

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.