On rank 2 semistable vector bundles over an irreducible nodal curve of genus 2

Sonia Brivio

Bollettino dell'Unione Matematica Italiana (1998)

  • Volume: 1-B, Issue: 3, page 611-629
  • ISSN: 0392-4041

How to cite

top

Brivio, Sonia. "On rank $2$ semistable vector bundles over an irreducible nodal curve of genus $2$." Bollettino dell'Unione Matematica Italiana 1-B.3 (1998): 611-629. <http://eudml.org/doc/195998>.

@article{Brivio1998,
author = {Brivio, Sonia},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {nodal curve; theta divisor; Jacobian},
language = {eng},
month = {10},
number = {3},
pages = {611-629},
publisher = {Unione Matematica Italiana},
title = {On rank $2$ semistable vector bundles over an irreducible nodal curve of genus $2$},
url = {http://eudml.org/doc/195998},
volume = {1-B},
year = {1998},
}

TY - JOUR
AU - Brivio, Sonia
TI - On rank $2$ semistable vector bundles over an irreducible nodal curve of genus $2$
JO - Bollettino dell'Unione Matematica Italiana
DA - 1998/10//
PB - Unione Matematica Italiana
VL - 1-B
IS - 3
SP - 611
EP - 629
LA - eng
KW - nodal curve; theta divisor; Jacobian
UR - http://eudml.org/doc/195998
ER -

References

top
  1. ALEXEEV, V., Compactified Jacobians, Preprint (1996). 
  2. ATIYAH, M. F., Vector bundles over an elliptic curve, Proc. London Math. Soc., 7 (1957), 414-452. Zbl0084.17305MR131423
  3. ARBARELLO, E.- CORNALBA, M.- GRIFFITHS, P. A.- HARRIS, J., Geometry of Algebraic Curves, I, Springer, Berlin (1985). Zbl0559.14017
  4. BARDELLI, F., Stable curves, Lectures on Riemann surfaces, Proc. of College at I.C.T.P.Trieste (1987). 
  5. BERTRAM, A., Moduli of rank two vector bundles, theta divisors, and the geometry of curves in projective spaces, J. Diff. Geom., 35 (1992), 429-469. Zbl0787.14014MR1158344
  6. BRIVIO, S.- VERRA, A., The theta divisor of S U C 2 s is very ample if C is not hyperelliptic, Duke Math. J., 82, 3 (1996), 503-552. Zbl0876.14024MR1387683
  7. CATANESE, F., Pluricanonical-Gorenstein curves, Enumarative Geometry and Classical Algebraic Geometry, Nice, Prog. in Math., Birkhäuser, 24 (1981), 51-95. Zbl0518.14017MR685764
  8. CATANESE, F.- FRANCIOSI, M., Divisor of small genus on algebraic surfaces and projective embeddings, Israel Mathematical Conference Proc. Zbl0855.14004
  9. CATANESE, F.- FRANCIOSI, M.- HULEK, K.- REID, M., Embeddings of curves and surfaces, Preprint (1996). Zbl0933.14003
  10. D'SOUZA, C., Compactification of generalized Jacobian, Proc. Indian Acad. Sci. Sect. Math. Sci., 88 (1979), 419-457. Zbl0442.14016MR569548
  11. EISENBUD, D.- HARRIS, J., On varieties of minimal degree, (A centennial account), Algebraic Geometry, Proceeding of Symposia in Pure Mathematics, 46 (1987), 3-13. Zbl0646.14036MR927946
  12. GRIFFITHS, P. A.- HARRIS, J., Principles of Algebraic Geometry, Wiley, New-York (1978). Zbl0408.14001MR507725
  13. HARTSHORNE, R., Algebraic Geometry, Springer, Berlin (1977). Zbl0367.14001MR463157
  14. MUMFORD, D., On the equations defining Abelian Varieties, Invent. Math., 1 (1966), 287-354. Zbl0219.14024MR204427
  15. NEWSTEAD, P. E., Lectures on Introduction to Moduli Problems and Orbit Spaces, Tata Institute of Fundamental Research, Bombay (1978). Zbl0411.14003MR546290
  16. NARASIMHAN, M. S.- RAMANAN, S., Moduli of vector bundles on a compact Riemann surface, Ann. Math., 89 (1969), 19-51. Zbl0186.54902MR242185
  17. NARASIMHAN, M. S.- RAMANAN, S., 2-theta linear systems on Abelian Varieties, Vector Bundles on Algebraic Varieties, Oxford (1989), 415-427. Zbl0685.14023MR893605
  18. SESHADRI, C. S., Space of unitary vector bundles on a compact Riemann surface, Ann. Math., 85 (1967), 303-336. Zbl0173.23001MR233371
  19. SESHADRI, C. S., Fibres Vectoriels sur les courbes algebriques, Asterisque, 96 (1982). Zbl0517.14008MR699278

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.