Uniform Kadec-Klee property and nearly uniform convexity in Köthe-Bochner sequence spaces

Paweł Kolwicz

Bollettino dell'Unione Matematica Italiana (2003)

  • Volume: 6-B, Issue: 1, page 221-235
  • ISSN: 0392-4041

Abstract

top
The uniformly Kadec-Klee property in Köthe-Bochner sequence spaces E X , where E is a Köthe sequence space and X is an arbitrary separable Banach space, is studied. Namely, the question of whether or not this geometric property lifts from X and E to E X is examined. It is settled affirmatively in contrast to the case when E is a Köthe function space. As a corollary we get criteria for E X to be nearly uniformly convex.

How to cite

top

Kolwicz, Paweł. "Uniform Kadec-Klee property and nearly uniform convexity in Köthe-Bochner sequence spaces." Bollettino dell'Unione Matematica Italiana 6-B.1 (2003): 221-235. <http://eudml.org/doc/196023>.

@article{Kolwicz2003,
abstract = {The uniformly Kadec-Klee property in Köthe-Bochner sequence spaces $E(X)$, where $E$ is a Köthe sequence space and $X$ is an arbitrary separable Banach space, is studied. Namely, the question of whether or not this geometric property lifts from $X$ and $E$ to $E(X)$ is examined. It is settled affirmatively in contrast to the case when $E$ is a Köthe function space. As a corollary we get criteria for $E(X)$ to be nearly uniformly convex.},
author = {Kolwicz, Paweł},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {221-235},
publisher = {Unione Matematica Italiana},
title = {Uniform Kadec-Klee property and nearly uniform convexity in Köthe-Bochner sequence spaces},
url = {http://eudml.org/doc/196023},
volume = {6-B},
year = {2003},
}

TY - JOUR
AU - Kolwicz, Paweł
TI - Uniform Kadec-Klee property and nearly uniform convexity in Köthe-Bochner sequence spaces
JO - Bollettino dell'Unione Matematica Italiana
DA - 2003/2//
PB - Unione Matematica Italiana
VL - 6-B
IS - 1
SP - 221
EP - 235
AB - The uniformly Kadec-Klee property in Köthe-Bochner sequence spaces $E(X)$, where $E$ is a Köthe sequence space and $X$ is an arbitrary separable Banach space, is studied. Namely, the question of whether or not this geometric property lifts from $X$ and $E$ to $E(X)$ is examined. It is settled affirmatively in contrast to the case when $E$ is a Köthe function space. As a corollary we get criteria for $E(X)$ to be nearly uniformly convex.
LA - eng
UR - http://eudml.org/doc/196023
ER -

References

top
  1. BESBES, M.- DILWORTH, S. J.- DOWLING, P. N.- LENNARD, C. J., New convexity and fixed point properties in Hardy and Lebesgue-Bochner spaces, J. Functional Analysis, 119 (1993), 340-357. Zbl0804.46044MR1261096
  2. BIRKHOFF, G., Lattice Theory, Providence, RI1967. Zbl0153.02501MR227053
  3. CASTAING, C.- PLCUCIENNIK, R., The property (H) in Köthe-Bochner spaces, C. R. Acad. Sci. Paris, Serie I, 319 (1994), 1159-1163. Zbl0824.46042MR1309093
  4. CERDA, J.- HUDZIK, H.- MASTYŁO, M., Geometric properties of Köthe Bochner spaces, Math. Proc. Cambridge Philos Soc., 120 (1996), 521-533. Zbl0867.46024MR1388204
  5. CHEN, S.- PŁUCIENNIK, R., A note on H -points in in Köthe-Bochner spaces, Acta Math. Hungar., 94, 1-2 (2002), 59-66. Zbl1003.46019MR1905787
  6. DOMINGUES, T.- HUDZIK, H.- LÓPEZ, G.- SIMS, B., Complete characterizations of Kadec-Klee properties in Orlicz space, Houston J. Math. to appear. Zbl1155.46305MR2045669
  7. HIAI, F., Representation of additive functionals on vector-valued normed Köthe spaces, Kodai Math. J., 2 (1979), 300-313. Zbl0431.46025MR553237
  8. HUDZIK, H.- KAMIŃSKA, A.- MASTYŁO, M., On geometric properties of Orlicz-Lorentz spaces, Canad. Math. Bull. vol., 40 (1997), 316-329. Zbl0903.46014MR1464840
  9. HUDZIK, H.- KAMIŃSKA, A.- MASTYŁO, M., Monotonicity and rotundity properties in Banach lattices, Rocky Mountain J. Math., 30 (2000), 933-949. Zbl0979.46012MR1797824
  10. HUDZIK, H.- LANDES, T., Characteristic of convexity of Köthe function spaces, Math. Ann., 294 (1992), 117-124. Zbl0761.46016MR1180454
  11. HUFF, R., Banach spaces which are nearly uniformly convex, Rocky Mountain J. Math., 10 (1980), 743-749. Zbl0505.46011MR595102
  12. KANTOROVICH, L. V.- AKILOV, G. P., Functional Analysis, Nauka (Moscow, 1977) (in Russian). Zbl0555.46001MR511615
  13. KOLWICZ, P.- PŁUCIENNIK, R., P -convexity of Bochner-Orlicz spaces, Proc. Amer. Math. Soc., 126 8 (1998), 2315-2322. Zbl0896.46019MR1443391
  14. KRASSOWSKA, D.- PŁUCIENNIK, R., A note on property (H) in Köthe-Bochner sequence spaces, Math. Japonica, 46, No. 3 (1997), 407-412. Zbl0911.46003MR1487289
  15. KUTZAROVA, D.- LANDES, T., Nearly uniform convexity of infinite direct sums, Indiana Univ. Math. J., 41 (1992), 915-926. Zbl0790.46013MR1206336
  16. LIN, P. K., Köthe Bochner Function Spaces, to appear. Zbl1054.46003MR2018062
  17. LINDENSTRAUSS, J.- TZAFRIRI, L., Classical Banach spaces I, Springer-Verlag (1979). Zbl0852.46015MR540367
  18. LINDENSTRAUSS, J.- TZAFRIRI, L., Classical Banach spaces II, Springer-Verlag (1979). Zbl0403.46022MR540367
  19. PARTINGTON, J. R., On nearly uniformly convex Banach spaces, Math. Proc. Camb. Phil. Soc., 93 (1983), 127-129. Zbl0507.46011MR684281
  20. PŁUCIENNIK, R., Points of local uniform rotundity in Köthe Bochner spaces, Arch. Math., 70 (1998), 479-485. Zbl0916.46022MR1621994
  21. SMITH, M. A.- TURETT, B., Rotundity in Lebesgue-Bochner function spaces, Trans. Amer. Math. Soc., 257 (1980), 105-118. Zbl0368.46039MR549157
  22. SUKOCHEV, P., On the uniform Kadec-Klee property with respect to convergence in measure, J. Austral. Math. Soc., 59 (1995), 343-352. Zbl0854.46015MR1355225

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.