Curves in Lorentzian spaces
E. Nešović; M. Petrović-Torgašev; L. Verstraelen
Bollettino dell'Unione Matematica Italiana (2005)
- Volume: 8-B, Issue: 3, page 685-696
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topNešović, E., Petrović-Torgašev, M., and Verstraelen, L.. "Curves in Lorentzian spaces." Bollettino dell'Unione Matematica Italiana 8-B.3 (2005): 685-696. <http://eudml.org/doc/196038>.
@article{Nešović2005,
abstract = {The notion of ``hyperbolic'' angle between any two time-like directions in the Lorentzian plane $L^\{2\}$ was properly defined and studied by Birman and Nomizu [1,2]. In this article, we define the notion of hyperbolic angle between any two non-null directions in $L^\{2\}$ and we define a measure on the set of these hyperbolic angles. As an application, we extend Scofield's work on the Euclidean curves of constant precession [9] to the Lorentzian setting, thus expliciting space-like curves in $L^\{3\}$ whose natural equations express their curvature and torsion as elementary eigenfunctions of their Laplacian.},
author = {Nešović, E., Petrović-Torgašev, M., Verstraelen, L.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {685-696},
publisher = {Unione Matematica Italiana},
title = {Curves in Lorentzian spaces},
url = {http://eudml.org/doc/196038},
volume = {8-B},
year = {2005},
}
TY - JOUR
AU - Nešović, E.
AU - Petrović-Torgašev, M.
AU - Verstraelen, L.
TI - Curves in Lorentzian spaces
JO - Bollettino dell'Unione Matematica Italiana
DA - 2005/10//
PB - Unione Matematica Italiana
VL - 8-B
IS - 3
SP - 685
EP - 696
AB - The notion of ``hyperbolic'' angle between any two time-like directions in the Lorentzian plane $L^{2}$ was properly defined and studied by Birman and Nomizu [1,2]. In this article, we define the notion of hyperbolic angle between any two non-null directions in $L^{2}$ and we define a measure on the set of these hyperbolic angles. As an application, we extend Scofield's work on the Euclidean curves of constant precession [9] to the Lorentzian setting, thus expliciting space-like curves in $L^{3}$ whose natural equations express their curvature and torsion as elementary eigenfunctions of their Laplacian.
LA - eng
UR - http://eudml.org/doc/196038
ER -
References
top- BIRMAN, G. S. - NOMIZU, K., Trigonometry in Lorentzian geometry, Amer. Math. Monthly91, (1984), 543-549. Zbl0555.51009MR764793
- BIRMAN, G. S. - NOMIZU, K., The Gauss-Bonnet theorem for 2-dimensional space-times, Michigan Math. J., 31 (1984), 77-81. Zbl0591.53053MR736471
- BORSUK, K. - SZMIELEW, W., Foundations of Geometry, North-Holland (Amsterdam, 1960). Zbl0093.33301
- CHEN, B. Y., Total mean curvature and submanifolds of finite type, World Scientific (Singapore, 1984). Zbl0537.53049MR749575
- F. DILLEN - L. VERSTRAELEN (eds.), Handbook of Differential geometry, Vol. I (Elsevier, Amsterdam, 2000). Zbl1069.00010MR1736851
- NEŠOVIĆ, E., Differential geometry of curves in Minkowski space, Doctoral thesis, University of Kragujevac, Faculty of Science (Kragujevac, 2002).
- O'NEILL, B., Semi-Riemannian Geometry, Academic Press (New York, 1983). Zbl0531.53051MR719023
- PETROVIĆ, M. - VERSTRAELEN, J. - VERSTRAELEN, L., Principal normal spectral variations of space curves, Proyecciones19 (2000), 141-155. MR1778799
- SCOFIELD, P. D., Curves of constant precession, Amer. Math. Monthly, 102 (1995), 531-537. Zbl0881.53002MR1336639
- STRUIK, D. J., Lectures on classical differential geometry, Addison-Wesley (Boston, 1950). Zbl0105.14707MR36551
- SYNGE, J. L., Relativity: the special theory, North-Holland (Amsterdam, 1972). Zbl0071.21804
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.