Decay estimates for solutions of a class of parabolic problems arising in filtration through porous media
G. A. Philippin; S. Vernier-Piro
Bollettino dell'Unione Matematica Italiana (2001)
- Volume: 4-B, Issue: 2, page 473-481
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topPhilippin, G. A., and Vernier-Piro, S.. "Decay estimates for solutions of a class of parabolic problems arising in filtration through porous media." Bollettino dell'Unione Matematica Italiana 4-B.2 (2001): 473-481. <http://eudml.org/doc/196048>.
@article{Philippin2001,
author = {Philippin, G. A., Vernier-Piro, S.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {473-481},
publisher = {Unione Matematica Italiana},
title = {Decay estimates for solutions of a class of parabolic problems arising in filtration through porous media},
url = {http://eudml.org/doc/196048},
volume = {4-B},
year = {2001},
}
TY - JOUR
AU - Philippin, G. A.
AU - Vernier-Piro, S.
TI - Decay estimates for solutions of a class of parabolic problems arising in filtration through porous media
JO - Bollettino dell'Unione Matematica Italiana
DA - 2001/6//
PB - Unione Matematica Italiana
VL - 4-B
IS - 2
SP - 473
EP - 481
LA - eng
UR - http://eudml.org/doc/196048
ER -
References
top- AMANN, H., Quasilinear evolution equations and parabolic systems, Trans. Amer. Math. Soc., 293 (1986), 191-227. Zbl0635.47056MR814920
- ARONSON, D. G., The porous medium equation, Lecture Notes in Math., 1224 (1985), 1-46. Zbl0626.76097MR877986
- BALL, J. M., Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford, 28 (1977), 473-486. Zbl0377.35037MR473484
- FRIEDMAN, A., Remarks on the maximum principle for parabolic equations and its applications, Pacific J. of Math., 8 (1958), 201-211. Zbl0103.06403MR102655
- KIELHÖFER, H., Halbgruppen und semilineare Anfangs-randwert-probleme, Manuscripta Math., 12 (1974), 121-152. Zbl0276.35059MR344681
- NIRENBERG, L., A strong maximum principle for parabolic equations, Comm. Pure and Appl. Math., 6 (1953), 167-177. Zbl0050.09601MR55544
- PAYNE, L. E.- PHILIPPIN, G. A., Decay bounds for solutions of second order parabolic problems and their derivatives, Math. Models and Meth. in Appl. Sci., 5 (1995), 95-110. Zbl0832.35019MR1314998
- PAYNE, L. E.- PHILIPPIN, G. A., Decay bounds in quasilinear parabolic problems; in Nonlinear Problems in Applied Mathematics, Ed. by T. S. Angell, L. Pamela Cook, R. E. Kleinman and W. E. Olmstead, SIAM (1996), 206-216. Zbl0913.35066
- PHILIPPIN, G. A.- VERNIER-PIRO, S., Explicit exponential decay bounds, in quasilinear parabolic problems, J. of Inequalities and Applications, 3 (1999), 1-23. Zbl0938.35027MR1731666
- PHILIPPIN, G. A.- VERNIER-PIRO, S., Explicit decay bounds in some quasilinear onedimensional parabolic problems, Math. Models and Methods in Appl. Sci., 22 (1999), 101-109. Zbl0921.35029MR1670755
- PROTTER, M. H.- WEINBERGER, H. F., Maximum Principles in Differential Equations, Springer Verlag, Berlin (1984). Zbl0549.35002MR762825
- SCHEIDEGGER, A. E., The physics of flow through porous media, Univ. of Toronto Press, Toronto (1974). Zbl0095.22402
- SPERB, R., Maximum principles and their applications, Academic PressMath. in Sci. and Engineering, 157 (1981). Zbl0454.35001MR615561
- STRAUGHAN, B., Instability, Nonexistence and Weighted Energy Methods in Fluid Dynamics and Related Theories, Pitman Research Notes in Mathematics, 74 (1982). Zbl0492.76001MR697384
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.