Decay estimates for solutions of a class of parabolic problems arising in filtration through porous media

G. A. Philippin; S. Vernier-Piro

Bollettino dell'Unione Matematica Italiana (2001)

  • Volume: 4-B, Issue: 2, page 473-481
  • ISSN: 0392-4041

How to cite

top

Philippin, G. A., and Vernier-Piro, S.. "Decay estimates for solutions of a class of parabolic problems arising in filtration through porous media." Bollettino dell'Unione Matematica Italiana 4-B.2 (2001): 473-481. <http://eudml.org/doc/196048>.

@article{Philippin2001,
author = {Philippin, G. A., Vernier-Piro, S.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {473-481},
publisher = {Unione Matematica Italiana},
title = {Decay estimates for solutions of a class of parabolic problems arising in filtration through porous media},
url = {http://eudml.org/doc/196048},
volume = {4-B},
year = {2001},
}

TY - JOUR
AU - Philippin, G. A.
AU - Vernier-Piro, S.
TI - Decay estimates for solutions of a class of parabolic problems arising in filtration through porous media
JO - Bollettino dell'Unione Matematica Italiana
DA - 2001/6//
PB - Unione Matematica Italiana
VL - 4-B
IS - 2
SP - 473
EP - 481
LA - eng
UR - http://eudml.org/doc/196048
ER -

References

top
  1. AMANN, H., Quasilinear evolution equations and parabolic systems, Trans. Amer. Math. Soc., 293 (1986), 191-227. Zbl0635.47056MR814920
  2. ARONSON, D. G., The porous medium equation, Lecture Notes in Math., 1224 (1985), 1-46. Zbl0626.76097MR877986
  3. BALL, J. M., Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford, 28 (1977), 473-486. Zbl0377.35037MR473484
  4. FRIEDMAN, A., Remarks on the maximum principle for parabolic equations and its applications, Pacific J. of Math., 8 (1958), 201-211. Zbl0103.06403MR102655
  5. KIELHÖFER, H., Halbgruppen und semilineare Anfangs-randwert-probleme, Manuscripta Math., 12 (1974), 121-152. Zbl0276.35059MR344681
  6. NIRENBERG, L., A strong maximum principle for parabolic equations, Comm. Pure and Appl. Math., 6 (1953), 167-177. Zbl0050.09601MR55544
  7. PAYNE, L. E.- PHILIPPIN, G. A., Decay bounds for solutions of second order parabolic problems and their derivatives, Math. Models and Meth. in Appl. Sci., 5 (1995), 95-110. Zbl0832.35019MR1314998
  8. PAYNE, L. E.- PHILIPPIN, G. A., Decay bounds in quasilinear parabolic problems; in Nonlinear Problems in Applied Mathematics, Ed. by T. S. Angell, L. Pamela Cook, R. E. Kleinman and W. E. Olmstead, SIAM (1996), 206-216. Zbl0913.35066
  9. PHILIPPIN, G. A.- VERNIER-PIRO, S., Explicit exponential decay bounds, in quasilinear parabolic problems, J. of Inequalities and Applications, 3 (1999), 1-23. Zbl0938.35027MR1731666
  10. PHILIPPIN, G. A.- VERNIER-PIRO, S., Explicit decay bounds in some quasilinear onedimensional parabolic problems, Math. Models and Methods in Appl. Sci., 22 (1999), 101-109. Zbl0921.35029MR1670755
  11. PROTTER, M. H.- WEINBERGER, H. F., Maximum Principles in Differential Equations, Springer Verlag, Berlin (1984). Zbl0549.35002MR762825
  12. SCHEIDEGGER, A. E., The physics of flow through porous media, Univ. of Toronto Press, Toronto (1974). Zbl0095.22402
  13. SPERB, R., Maximum principles and their applications, Academic PressMath. in Sci. and Engineering, 157 (1981). Zbl0454.35001MR615561
  14. STRAUGHAN, B., Instability, Nonexistence and Weighted Energy Methods in Fluid Dynamics and Related Theories, Pitman Research Notes in Mathematics, 74 (1982). Zbl0492.76001MR697384

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.