Global existence and regularity of solutions for complex Ginzburg-Landau equations

Stéphane Descombes; Mohand Moussaoui

Bollettino dell'Unione Matematica Italiana (2000)

  • Volume: 3-B, Issue: 1, page 193-211
  • ISSN: 0392-4041

How to cite

top

Descombes, Stéphane, and Moussaoui, Mohand. "Global existence and regularity of solutions for complex Ginzburg-Landau equations." Bollettino dell'Unione Matematica Italiana 3-B.1 (2000): 193-211. <http://eudml.org/doc/196056>.

@article{Descombes2000,
author = {Descombes, Stéphane, Moussaoui, Mohand},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {193-211},
publisher = {Unione Matematica Italiana},
title = {Global existence and regularity of solutions for complex Ginzburg-Landau equations},
url = {http://eudml.org/doc/196056},
volume = {3-B},
year = {2000},
}

TY - JOUR
AU - Descombes, Stéphane
AU - Moussaoui, Mohand
TI - Global existence and regularity of solutions for complex Ginzburg-Landau equations
JO - Bollettino dell'Unione Matematica Italiana
DA - 2000/2//
PB - Unione Matematica Italiana
VL - 3-B
IS - 1
SP - 193
EP - 211
LA - eng
UR - http://eudml.org/doc/196056
ER -

References

top
  1. DOERING, C. R.- GIBBON, J. D.- LEVERMORE, C. D., Weak and strong solutions of the complex Ginzburg-Landau equation, Physica D, 71 (1994), n. 3, 285-318. Zbl0810.35119MR1264120
  2. DORE, G.- VENNI, A., On the closedness of the sum of two closed operators, Mathematische Zeitschrift, 195 (1997), 279-286. Zbl0615.47002
  3. FAUVE, S.- THUAL, O., Localized structures generated by subcritical instabilities, J. Phys. France, 49 (1988), 1829-1833. 
  4. GINIBRE, J.- VELO, G., The Cauchy problem in local spaces for the complex Ginzburg-Landau equation. I. Compactness methods, Physica D, 95 (1996), no. 3-4, 191-228. Zbl0889.35045MR1406282
  5. GINIBRE, J.- VELO, G., The Cauchy problem in local spaces for the complex Ginzburg-Landau equation. II. Contraction methods, Comm. Math. Phys., 187 (1997), no. 1, 45-79. Zbl0889.35046MR1463822
  6. HIBER, M.- PRÜSS, J., Heat kernels and maximal L p - L q estimates for parabolic evolution equations, Comm. Partial Differential Equations, 22 (1997), no. 9-10, 1647-1669. Zbl0886.35030MR1469585
  7. LADYZHENSKAYA, O. A.- SOLONNIKOV, V. A.- URAL'TSEVA, N. N., Linear and quasilinear equations of parabolic type, Nauka, Moscou, (1967); English transl. Amer. Math. Soc.Providence, RI (1968). Zbl0174.15403
  8. DE MOTTONI, P.- SCHATZMAN, M., Geometrical evolution of developed interfaces, Transactions of the American Mathematical Society, Volume 347, Number 5 (1995), 1533-1589. Zbl0840.35010MR1672406
  9. PRÜSS, J.- SOHR, H., On operators with bounded imaginary powers in Banach spaces, Mathematische Zeitschrift, 203 (1990), 429-452. Zbl0665.47015MR1038710
  10. PRÜSS, J.- SOHR, H., Imaginary powers of elliptic second order differential operators in L p -spaces, Hiroshima Math. J., 23 (1993), no. 1, 161-192. Zbl0790.35023MR1211773
  11. SEELEY, R., Norms and domains of the complex powers A B z , Am. Jour. Math., 93 (1971), 299-309. Zbl0218.35034MR287376
  12. TRIBEL, H., Interpolation Theory, Function Spaces, Differential Operators, North Holland, Amterdam, New York, Oxford (1978). Zbl0387.46032

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.