On the simple connectivity at infinity of groups

Daniele Ettore Otera

Bollettino dell'Unione Matematica Italiana (2003)

  • Volume: 6-B, Issue: 3, page 739-748
  • ISSN: 0392-4041

Abstract

top
We study the simple connectivity at infinity of groups of finite presentation, and we give a geometric proof of its invariance under quasi-isometry in a special case.

How to cite

top

Otera, Daniele Ettore. "On the simple connectivity at infinity of groups." Bollettino dell'Unione Matematica Italiana 6-B.3 (2003): 739-748. <http://eudml.org/doc/196090>.

@article{Otera2003,
abstract = {We study the simple connectivity at infinity of groups of finite presentation, and we give a geometric proof of its invariance under quasi-isometry in a special case.},
author = {Otera, Daniele Ettore},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {Cayley complex; quasi-isometry},
language = {eng},
month = {10},
number = {3},
pages = {739-748},
publisher = {Unione Matematica Italiana},
title = {On the simple connectivity at infinity of groups},
url = {http://eudml.org/doc/196090},
volume = {6-B},
year = {2003},
}

TY - JOUR
AU - Otera, Daniele Ettore
TI - On the simple connectivity at infinity of groups
JO - Bollettino dell'Unione Matematica Italiana
DA - 2003/10//
PB - Unione Matematica Italiana
VL - 6-B
IS - 3
SP - 739
EP - 748
AB - We study the simple connectivity at infinity of groups of finite presentation, and we give a geometric proof of its invariance under quasi-isometry in a special case.
LA - eng
KW - Cayley complex; quasi-isometry
UR - http://eudml.org/doc/196090
ER -

References

top
  1. DAVIS, M., Groups generated by reflections and aspherical manifolds non covered by Euclidian Spaces, Ann. of Math., 117 (1983), 293-324. Zbl0531.57041MR690848
  2. FUNAR, L.- OTERA, D. E., Quasi-isometry invariance of the simple connectivity at infinity of groups, preprint n. 141 Univ. di Palermo, 4 p. 2001. 
  3. GABAI, D., Convergence groups are Fuchsian groups, Annals of Mathematics, 136 (1992), 447-510. Zbl0785.57004MR1189862
  4. E. GHYS-P. DE LA HARPE (Editors), Sur les groupes hyperboliques d'après M. Gromov, Progress in Math., vol. 3, Birkhauser (1990). Zbl0731.20025MR1086648
  5. GEOGHEGAN, R.- MIHALIK, M., The fundamental group at infinity, Topology, 35 (1996), 655-669. Zbl0860.57002MR1396771
  6. GROMOV, M., Hyperbolic groups, Essays in Group Theory (S. Gersten Ed.), MSRI publications, no. 8, Springer-Verlag (1987). Zbl0634.20015MR919829
  7. HASS, J.- RUBINSTEIN, H.- SCOTT, P., Compactifying covering of closed 3 -manifolds, J. of Diff. Geom., 30 (1989), 817-832. Zbl0693.57011MR1021374
  8. LEE, R.- RAYMOND, F., Manifolds covered by Euclidian space, Topology, 14 (1979), 49-57. Zbl0313.57005MR365581
  9. MCMILLAN, D. R., Some contractible open 3 -manifold, Transactions of A.M.S., 102 (1962), 373-382. Zbl0111.18701MR137105
  10. MCMILLAN, D. R.- TICKSTUN, T. L., Open 3 -manifolds and the Poincare conjecture, Topology, 19 (1980), 313-320. Zbl0441.57010MR579580
  11. MYERS, R., Contractible open 3 -manifolds that are not covering spaces, Topology, 27 (1988), 27-35. Zbl0658.57007MR935526
  12. POÉNARU, V., π 1 M ~ 3 = 0 , A short outline of the proof, Prépublication d'Orsay, 73 (1999). 
  13. POÉNARU, V., Universal covering spaces of closed 3 -manifolds are simply-connected at infinity, Prépublication d'Orsay, 20 (2000). 
  14. STALLINGS, J., The piecewise linear structure of the Euclidean space, Proc. of the Cambridge Math. Phil. Soc., 58 (1962), 481-488. Zbl0107.40203MR149457
  15. TANASI, C., Sui gruppi semplicemente connessi all'infinito, Rend. Ist. Mat. Univ. Trieste, 31 (1999), 61-78. Zbl0965.57003
  16. WALDHAUSEN, F., On irreducible 3-manifolds which are sufficiently large, Ann. of Math., 87 (1968), 56-88. Zbl0157.30603MR224099
  17. WHITEHEAD, J. H. C., A certain open manifold whose group is unity, Quart. J. of Math., 6 (1935), 268-279. Zbl0013.08103

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.