On the simple connectivity at infinity of groups
Bollettino dell'Unione Matematica Italiana (2003)
- Volume: 6-B, Issue: 3, page 739-748
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topOtera, Daniele Ettore. "On the simple connectivity at infinity of groups." Bollettino dell'Unione Matematica Italiana 6-B.3 (2003): 739-748. <http://eudml.org/doc/196090>.
@article{Otera2003,
abstract = {We study the simple connectivity at infinity of groups of finite presentation, and we give a geometric proof of its invariance under quasi-isometry in a special case.},
author = {Otera, Daniele Ettore},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {Cayley complex; quasi-isometry},
language = {eng},
month = {10},
number = {3},
pages = {739-748},
publisher = {Unione Matematica Italiana},
title = {On the simple connectivity at infinity of groups},
url = {http://eudml.org/doc/196090},
volume = {6-B},
year = {2003},
}
TY - JOUR
AU - Otera, Daniele Ettore
TI - On the simple connectivity at infinity of groups
JO - Bollettino dell'Unione Matematica Italiana
DA - 2003/10//
PB - Unione Matematica Italiana
VL - 6-B
IS - 3
SP - 739
EP - 748
AB - We study the simple connectivity at infinity of groups of finite presentation, and we give a geometric proof of its invariance under quasi-isometry in a special case.
LA - eng
KW - Cayley complex; quasi-isometry
UR - http://eudml.org/doc/196090
ER -
References
top- DAVIS, M., Groups generated by reflections and aspherical manifolds non covered by Euclidian Spaces, Ann. of Math., 117 (1983), 293-324. Zbl0531.57041MR690848
- FUNAR, L.- OTERA, D. E., Quasi-isometry invariance of the simple connectivity at infinity of groups, preprint n. 141 Univ. di Palermo, 4 p. 2001.
- GABAI, D., Convergence groups are Fuchsian groups, Annals of Mathematics, 136 (1992), 447-510. Zbl0785.57004MR1189862
- E. GHYS-P. DE LA HARPE (Editors), Sur les groupes hyperboliques d'après M. Gromov, Progress in Math., vol. 3, Birkhauser (1990). Zbl0731.20025MR1086648
- GEOGHEGAN, R.- MIHALIK, M., The fundamental group at infinity, Topology, 35 (1996), 655-669. Zbl0860.57002MR1396771
- GROMOV, M., Hyperbolic groups, Essays in Group Theory (S. Gersten Ed.), MSRI publications, no. 8, Springer-Verlag (1987). Zbl0634.20015MR919829
- HASS, J.- RUBINSTEIN, H.- SCOTT, P., Compactifying covering of closed -manifolds, J. of Diff. Geom., 30 (1989), 817-832. Zbl0693.57011MR1021374
- LEE, R.- RAYMOND, F., Manifolds covered by Euclidian space, Topology, 14 (1979), 49-57. Zbl0313.57005MR365581
- MCMILLAN, D. R., Some contractible open -manifold, Transactions of A.M.S., 102 (1962), 373-382. Zbl0111.18701MR137105
- MCMILLAN, D. R.- TICKSTUN, T. L., Open -manifolds and the Poincare conjecture, Topology, 19 (1980), 313-320. Zbl0441.57010MR579580
- MYERS, R., Contractible open -manifolds that are not covering spaces, Topology, 27 (1988), 27-35. Zbl0658.57007MR935526
- POÉNARU, V., , A short outline of the proof, Prépublication d'Orsay, 73 (1999).
- POÉNARU, V., Universal covering spaces of closed -manifolds are simply-connected at infinity, Prépublication d'Orsay, 20 (2000).
- STALLINGS, J., The piecewise linear structure of the Euclidean space, Proc. of the Cambridge Math. Phil. Soc., 58 (1962), 481-488. Zbl0107.40203MR149457
- TANASI, C., Sui gruppi semplicemente connessi all'infinito, Rend. Ist. Mat. Univ. Trieste, 31 (1999), 61-78. Zbl0965.57003
- WALDHAUSEN, F., On irreducible 3-manifolds which are sufficiently large, Ann. of Math., 87 (1968), 56-88. Zbl0157.30603MR224099
- WHITEHEAD, J. H. C., A certain open manifold whose group is unity, Quart. J. of Math., 6 (1935), 268-279. Zbl0013.08103
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.