On special p -groups

Renza Cortini

Bollettino dell'Unione Matematica Italiana (1998)

  • Volume: 1-B, Issue: 3, page 677-689
  • ISSN: 0392-4041

How to cite

top

Cortini, Renza. "On special $p$-groups." Bollettino dell'Unione Matematica Italiana 1-B.3 (1998): 677-689. <http://eudml.org/doc/196133>.

@article{Cortini1998,
author = {Cortini, Renza},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {commutators; bilinear forms; special groups; Abelian subgroups; automorphisms},
language = {eng},
month = {10},
number = {3},
pages = {677-689},
publisher = {Unione Matematica Italiana},
title = {On special $p$-groups},
url = {http://eudml.org/doc/196133},
volume = {1-B},
year = {1998},
}

TY - JOUR
AU - Cortini, Renza
TI - On special $p$-groups
JO - Bollettino dell'Unione Matematica Italiana
DA - 1998/10//
PB - Unione Matematica Italiana
VL - 1-B
IS - 3
SP - 677
EP - 689
LA - eng
KW - commutators; bilinear forms; special groups; Abelian subgroups; automorphisms
UR - http://eudml.org/doc/196133
ER -

References

top
  1. BEISIEGEL, B., Semi-Extraspezielle p -Gruppen, Math. Z., 156 (1977), 247-254. Zbl0346.20016MR473004
  2. CORSI TANI, G., Automorphisms and ultraspecial groups, J. Algebra, 56 (1979), 43-49. Zbl0403.20018MR527154
  3. GORENSTEIN, D., Finite Groups, Harper's Series in Modern Mathematics, Harper & Row, New York (1968). Zbl0185.05701
  4. HEINEKEN, H., Nilpotente Gruppen deren Samtliche Normalteileer charakteristich sind, Archiv der Mathematik, 33 (1979), 497-503. Zbl0413.20017MR570484
  5. HEINEKEN, H., Nilpotent Groups of class two that can appear as central quotient groups, Rend. Sem. Mat. Univ. Padova, 84 (1990), 241-248. Zbl0722.20011MR1101296
  6. HEINEKEN, H.- LIEBECK, H., The occurrence of finite groups in the automorphism group of nilpotent groups of class two, Arch. Math., 24 (1973), 8-16. Zbl0284.20009
  7. HUPPERT, B., Endliche Gruppen I, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen Band CXXXIV, Springer-Verlag, Berlin (1967). Zbl0217.07201MR224703
  8. ROBINSON, D., A Course in the Theory of Groups, Springer-Verlag, New York (1982). Zbl0483.20001MR648604
  9. SCHARLAU, R., Paare alternierender Formen, Math. Z., 147 (1976), 13-19. Zbl0304.15008MR419484
  10. VERARDI, L., Gruppi semiextraspeciali di esponente p , Ann. Mat. Pura Appl., IV, 146 (1987), 131-171. Zbl0648.20032MR932762
  11. VERARDI, L., Una classe di gruppi finiti di esponente p in cui ogni sottogruppo normale é caratteristico, Boll. Un. Mat. Ital. (6), 4-B (1985), 307-317. Zbl0562.20010
  12. VERARDI, L., A class of special p -groups, submitted. Zbl0866.20012
  13. VISNEVETSKII, A. L., Nilpotent groups of class two and exponent p with commutator subgroup of order p 2 , Dokl. Akad. Nauk Ucrain SSR, ser. A, n. 9 (1980), 9-11. 
  14. WEBB, U. H. M., The occurrence of groups as automorphisms of nilpotent pgroups, Arch. Math., 37 (1981), 481-489. Zbl0475.20027MR646507

NotesEmbed ?

top

You must be logged in to post comments.