Towards the determination of the regular n -covers of P G 3 , q

Martin Oxenham; Rey Casse

Bollettino dell'Unione Matematica Italiana (2003)

  • Volume: 6-B, Issue: 1, page 57-87
  • ISSN: 0392-4041

Abstract

top
A set of lines S of P G 3 , q is said to cover a point P of P G 3 , q n times if there are exactly n lines of S incident with P . An n -cover of P G 3 , q is a set of lines of P G 3 , q which covers each point of P G 3 , q n times. In this paper, the properties and known examples of n -covers are reviewed and it is demonstrated how n -covers of P G 3 , q can be used to construct classes of quasi- n -multiple Sperner designs. Finally, motivated by the problem of deriving these designs to arrive at new examples, the notion of regular n -covers of P G 3 , q is introduced. The main results of the paper are that no regular 2 -covers of P G 3 , q exist for q > 2 and that no regular n -covers n 3 exist whenever q n + 2 .

How to cite

top

Oxenham, Martin, and Casse, Rey. "Towards the determination of the regular $n$-covers of $PG(3,q)$." Bollettino dell'Unione Matematica Italiana 6-B.1 (2003): 57-87. <http://eudml.org/doc/196151>.

@article{Oxenham2003,
abstract = {A set of lines $S$ of $PG(3, q)$ is said to cover a point $P$ of $PG(3, q)$$n$ times if there are exactly $n$ lines of $S$ incident with $P$. An $n$-cover of $PG(3, q)$ is a set of lines of $PG(3, q)$ which covers each point of $PG(3, q)$$n$ times. In this paper, the properties and known examples of $n$-covers are reviewed and it is demonstrated how $n$-covers of $PG(3, q)$ can be used to construct classes of quasi-$n$-multiple Sperner designs. Finally, motivated by the problem of deriving these designs to arrive at new examples, the notion of regular $n$-covers of $PG(3, q)$ is introduced. The main results of the paper are that no regular $2$-covers of $PG(3, q)$ exist for $q>2$ and that no regular $n$-covers $(n\geq 3)$ exist whenever $q\geq n+2$.},
author = {Oxenham, Martin, Casse, Rey},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {57-87},
publisher = {Unione Matematica Italiana},
title = {Towards the determination of the regular $n$-covers of $PG(3,q)$},
url = {http://eudml.org/doc/196151},
volume = {6-B},
year = {2003},
}

TY - JOUR
AU - Oxenham, Martin
AU - Casse, Rey
TI - Towards the determination of the regular $n$-covers of $PG(3,q)$
JO - Bollettino dell'Unione Matematica Italiana
DA - 2003/2//
PB - Unione Matematica Italiana
VL - 6-B
IS - 1
SP - 57
EP - 87
AB - A set of lines $S$ of $PG(3, q)$ is said to cover a point $P$ of $PG(3, q)$$n$ times if there are exactly $n$ lines of $S$ incident with $P$. An $n$-cover of $PG(3, q)$ is a set of lines of $PG(3, q)$ which covers each point of $PG(3, q)$$n$ times. In this paper, the properties and known examples of $n$-covers are reviewed and it is demonstrated how $n$-covers of $PG(3, q)$ can be used to construct classes of quasi-$n$-multiple Sperner designs. Finally, motivated by the problem of deriving these designs to arrive at new examples, the notion of regular $n$-covers of $PG(3, q)$ is introduced. The main results of the paper are that no regular $2$-covers of $PG(3, q)$ exist for $q>2$ and that no regular $n$-covers $(n\geq 3)$ exist whenever $q\geq n+2$.
LA - eng
UR - http://eudml.org/doc/196151
ER -

References

top
  1. BAGCHI, B.- SASTRY, N. S. M., Even order inversive planes, generalized quadrangles and codes, Geom. Dedicata, 22 (1987), 137-147. Zbl0609.51011MR877206
  2. BAGCHI, B.- SASTRY, N. S. N., Intersection patterns of the classical ovoids in symplectic 3-space of even order, J. Algebra, 126 (1989), 147-160. Zbl0685.51006MR1023290
  3. BARLOTTI, A., SOME TOPICS IN FINITE GEOMETRICAL STRUCTURESInstitute of Statistics Mimeo Series, 439, University of North Carolina, 1965. 
  4. BEUTELSPACHER, A., On parallelisms in finite projective spaces, Geom. Dedicata., 3 (1974), 35-40. Zbl0282.50019MR341270
  5. BEUTELSPACHER, A., On t -covers in finite projective spaces, J. Geom., 12, no. 1 (1979), 10-16. Zbl0369.05020MR521135
  6. BILLINGTON, E. J., CONSTRUCTION OF SOME IRREDUCIBLE DESIGNS, Lecture Notes in Mathematics, Springer-Verlag, 1981. Zbl0488.05010MR674137
  7. BILLINGTON, E. J., Further constructions of irreducible designs, Congr. Numer., 35 (1982), 77-79. Zbl0513.05010MR725870
  8. BOSE, R. C.- BRUCK, R. H., The construction of translation planes from projective spaces, J. Algebra, 1 (1964), 85-102. Zbl0117.37402MR161206
  9. BRUCK, R. H., Construction problems of finite projective planes, in: Combinatorial Mathematics and its Applications, University of North Carolina Press, Chapel Hill, 1969. Zbl0206.23402MR250182
  10. BRUEN, A. A.- FISHER, J. C., Spreads which are not dual spreads, Canad. Math. Bull., 12, no. 6 (1969). Zbl0186.54303MR256257
  11. CAMERON, P. J.- VAN LINT, J. H., Graphs, codes and designs, London Mathematical Society Lecture Note Series, 43, Cambridge University Press. Zbl0427.05001MR579788
  12. DENNISTON, R. H. F., Some packings of projective spaces, Atti Accad. Naz. Lincei Rend., 52 (1972), 36-40. Zbl0239.50013MR331207
  13. DENNISTON, R. H. F., Cyclic packings of the projective space of order 8, Atti Accad. Naz. Lincei Rend., 54 (1973), 373-377. Zbl0307.50017MR362028
  14. EBERT, G. L., Partitioning projective geometries into caps, Canad. J. Math., 37, no. 6 (1985), 1163-1175. Zbl0571.51002MR828840
  15. EBERT, G. L., The completion problem for partial packings, Geom. Dedicata, 18 (1985), 261-267. Zbl0566.51013MR797145
  16. EBERT, G. L., Spreads obtained from ovoidal fibrations, in: Finite Geometries, Lecture Notes In Pure And Applied Mathematics, 103, Marcel Dekker, 1985. Zbl0577.51005MR826801
  17. FOULSER, D. A., Replaceable translation nets, Proc. London Math. Soc., 22 (3) (1971), 235-264. Zbl0212.52303MR291935
  18. GLYNN, D., On a set of lines of P G 3 , q corresponding to a maximal cap contained in the Klein quadric of P G 5 , q , Geom. Dedicata, 26, no. 3 (1988). Zbl0645.51012MR950065
  19. HALL, M. JR., Combinatorial theory, Blaisdell Publishing Company, 1967. Zbl0196.02401MR224481
  20. HALL, M. JR., Incidence axioms for affine geometries, J. Algebra, 21 (1972), 535-547. Zbl0252.50010MR317160
  21. HILL, R., On Pellegrino's 20 -Caps In S 4 , 3 , Annals of Discrete Mathematics, 18 (1983), 433-448. Zbl0505.51013MR695829
  22. HILTON, A. J. W.- TIERLINCK, L., Dimension in Steiner triple systems, Ann. Discrete Math., 7 (1980), 73-87. Zbl0441.05011MR584405
  23. HIRSCHFELD, J. W. P., Projective geometries over finite fields, Clarendon Press, Oxford. Zbl0899.51002MR1612570
  24. HIRSCHFELD, J. W. P., Finite projective spaces of three dimensions, Clarendon Press, Oxford, 1985. Zbl0574.51001MR840877
  25. JESSOP, C. M., The line complex, Chelsea, 1969. 
  26. JUNGNICKEL, D., Quasimultiples of biplanes and residual biplanes, Ars Combin., 19 (1984), 179-186. Zbl0572.05011MR810274
  27. JUNGNICKEL, D., Quasimultiples of projective and affine planes, J. Geom., 26 (1986). Zbl0586.51006MR850162
  28. KRAMER, E. S., Indecomposable triple systems, Discrete Math., 8 (1974), 173-180. Zbl0276.05020MR332536
  29. MATHON, R.- ROSA, A., A census of Mendelsohn triple systems, Ars Combin., 4 (1977), 309-315. Zbl0442.05006MR462968
  30. MATHON, R.- ROSA, A., Tables of parameters of BIBDS with r 41 including existence, enumeration and resolvability results, Ann. Discrete Math., 26 (1985), 275-308. Zbl0579.05016MR833795
  31. MORGAN, E. J., Some small quasi-multiple designs, Ars Combin., 3 (1977), 233-250. Zbl0394.05005MR457248
  32. MORGAN, E. J., Balanced ternary designs with block size three, in: Combinatorial Mathematics VII, Lecture Notes in Mathematics, 829, Springer-Verlag, 1980. Zbl0454.05017MR611194
  33. NICOLETTI, G., Su una nuova classe di spazi affini generalizzati di Sperner, Atti Accad. Naz. Lincei Rend., 59 (1975). Zbl0342.50013MR487751
  34. ORR, W. F., A characterization of subregular spreads in finite 3 -space, Geom. Dedicata, 5 (1976), 43-50. Zbl0335.50012MR470834
  35. OXENHAM, M. G.- CASSE, L. R. A., On a Geometric Representation of the Subgroups of Index 6 in S 6 , Discrete Mathematics, 92 (1991), 251-259. Zbl0752.20002MR1140591
  36. OXENHAM, M. G., On n -Covers of P G 3 , q and Related Structures, Doctoral Thesis, University of Adelaide, 1991. 
  37. OXENHAM, M. G.- CASSE, L. R. A., On the Resolvability of Hall Triple Systems, Bolletino U.M.I., 8, 1-B (1998), 639-649. Zbl0918.05019MR1662345
  38. PAYNE, S. E.- THAS, J. A., Finite Generalized Quadrangles, Research Notes in Mathematics, 110, Pitman Advanced Publishing Program, 1984. Zbl0551.05027MR767454
  39. PELLEGRINO, G., Sulle Calotte Massime Dello Spazio S 4 , 3 , Atti dell'Accad. di Scienze lettere e Arti di Palermo, Serie IV, Vol. XXXIV (1974-75), 297-328. Zbl0443.51008MR465903
  40. PENTTILA, T., PRIVATE COMMUNICATION, 1990. 
  41. PENTTILA, T.- WILLIAMS, B., Regular Packings of P G 3 , q , Europ. J. Combinatorics, 19 (1998), 713-720. Zbl0920.51006MR1642722
  42. PRINCE, A. R., The Cyclic Parallelisms of P G 3 , q , Europ. J. Combinatorics, 19 (1998), 613-616. Zbl0907.51004MR1637760
  43. RAO, C. R., Cyclical generation of linear subspaces in finite geometries, Conference on Combinatorial Mathematics and its Applications, (University of North Carolina, 1967), University of North Carolina Press, 1969, 515-535. Zbl0211.53203MR249317
  44. SAMĂRDZISKI, A., A class of finite Sperner spaces, Abh. Math. Sem. Univ. Hamburg, 42 (1974). Zbl0295.50031MR358538
  45. SEGRE, B., Teoria di Galois, fibrazioni proiettive e geometrie non Desarguesiane, Ann. Mat. Pura Appl., 64 (1964), 1-76. Zbl0128.15002MR169117
  46. SINGER, J., A theorem in finite geometry and some applications to number theory, Trans. Amer. Math. Soc., 43 (1938), 377-385. MR1501951JFM64.0972.04
  47. SYLVESTER, J. J., Collected mathematical papers, I. Cambridge University Press, (1904). JFM35.0020.01
  48. TEIRLINCK, L., On linear spaces in which every plane is either projective or affine, Geom. Dedicata, 4 (1975), 39-44. Zbl0309.50014MR384567
  49. TEIRLINCK, L., Combinatorial properties of planar spaces and embeddability, J. Combin. Theory A., 43 (1986), 291-302. Zbl0605.51009MR867653
  50. VAN MALDEGHEM, H., Generalized Polygons, Monographs in Mathematics, Birkhäuser, 1998. Zbl0914.51005MR1725957
  51. WERTHEIMER, M. A., A double affine plane of order 6 , J. Combin. Theory A., 56 (1991), 166-171. Zbl0748.05023MR1082850

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.