On quasihomogeneous manifolds – via Brion-Luna-Vust theorem
Marco Andreatta; Jarosław A. Wiśniewski
Bollettino dell'Unione Matematica Italiana (2003)
- Volume: 6-B, Issue: 3, page 531-544
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topAndreatta, Marco, and Wiśniewski, Jarosław A.. "On quasihomogeneous manifolds – via Brion-Luna-Vust theorem." Bollettino dell'Unione Matematica Italiana 6-B.3 (2003): 531-544. <http://eudml.org/doc/196189>.
@article{Andreatta2003,
abstract = {We consider a smooth projective variety $X$ on which a simple algebraic group $G$ acts with an open orbit. We discuss a theorem of Brion-Luna-Vust in order to relate the action of $G$ with the induced action of $G$ on the normal bundle of a closed orbit of the action. We get effective results in case $G=SL(n)$ and $\dim X \leq 2n-2$.},
author = {Andreatta, Marco, Wiśniewski, Jarosław A.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {531-544},
publisher = {Unione Matematica Italiana},
title = {On quasihomogeneous manifolds – via Brion-Luna-Vust theorem},
url = {http://eudml.org/doc/196189},
volume = {6-B},
year = {2003},
}
TY - JOUR
AU - Andreatta, Marco
AU - Wiśniewski, Jarosław A.
TI - On quasihomogeneous manifolds – via Brion-Luna-Vust theorem
JO - Bollettino dell'Unione Matematica Italiana
DA - 2003/10//
PB - Unione Matematica Italiana
VL - 6-B
IS - 3
SP - 531
EP - 544
AB - We consider a smooth projective variety $X$ on which a simple algebraic group $G$ acts with an open orbit. We discuss a theorem of Brion-Luna-Vust in order to relate the action of $G$ with the induced action of $G$ on the normal bundle of a closed orbit of the action. We get effective results in case $G=SL(n)$ and $\dim X \leq 2n-2$.
LA - eng
UR - http://eudml.org/doc/196189
ER -
References
top- AKHIEZER, D. N., Homogeneous Complex Manifolds, Encyclopedia of Mathematical Science, 10 (1990), Springer-Verlag, 195-244. Zbl0781.32031
- ANDREATTA, M., Actions of linear algebraic groups on projective manifolds and minimal model program, Osaka J. of Math., 38 (2001), 151-166. Zbl1054.14061MR1824904
- BOREL, A., Linear Algebraic Groups, II enlarged edition, SpringerGTM, 126 (1991). Zbl0726.20030MR1102012
- BOURBAKI, N., Groups et algébres de Lie, Chap. IV,V, VI, 2éme edition, Masson, Paris (1981). MR647314
- BRION, M., On spherical varieties of rank one, Proc. 1988-Montreal Conference on Group Actions and Invariant Theory, CMS Conf. Proc., 10 (1989), 31-42. Zbl0702.20029MR1021273
- BRION, M.- LUNA, D.- VUST, TH., Espaces Homogènes Sphériques, Inventiones Math., 84 (1986), 617-632. Zbl0604.14047MR837530
- LUNA, D., Slices étales, Bull. Soc. Math. France, Memoire, 33 (1973), 81-105. Zbl0286.14014MR342523
- LUNA, D.- VUST, TH., Plongements d'espaces homogènes, Comment. Math. Helv., 58 (1983), 186-245. Zbl0545.14010MR705534
- MABUCHI, T., On the classification of essentially effective -actions on algebraic -folds, Osaka J. Math., 16 (1979), 707-757. Zbl0422.14029
- MUKAI, S.- UMEMURA, H., Minimal rational threefolds, Lect. Notes in Math., 1016, Springer Verlag (1983), 490-518. Zbl0526.14006MR726439
- NAKANO, T., On equivariant completions of 3-dimensional homogeneous spaces of , Japanese J. of Math., 15 (1989), 221-273. Zbl0721.14008MR1039245
- NAKANO, T., On quasi-homogeneous fourfolds of , Osaka J. Math., 29 (1992), 719-733. Zbl0788.14046MR1192737
- OKONEK, C.- SCHNEIDER, M.- SPINDLER, H., Vector bundles on complex projective spaces, Progress in Math.3, Birkhäuser1980. Zbl0438.32016MR561910
- SZUREK, M.- WIŚNIEWSKI, J. A., On Fano manifolds, which are -bundles over , Nagoya Math. J., 120 (1990), 89-101. Zbl0728.14037MR1086572
- SLODOWY, P., Simple singularities and simple algebraic groups, SpringerLecture Notes in Math., 815 (1980). Zbl0441.14002MR584445
- TITS, J., Sur certaines classes d'espaces homogenés de groups de Lie, Mem. Ac. Roy. Belg., 29 (1955). Zbl0067.12301MR76286
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.