Intersecting maximals

A. L. Gilotti; U. Tiberio

Bollettino dell'Unione Matematica Italiana (2002)

  • Volume: 5-B, Issue: 3, page 735-746
  • ISSN: 0392-4041

Abstract

top
Given a class X of finite groups and a finite group G , the authors study the subgroup X G intersection of maximal subgroups that do not belong to X .

How to cite

top

Gilotti, A. L., and Tiberio, U.. "Intersecting maximals." Bollettino dell'Unione Matematica Italiana 5-B.3 (2002): 735-746. <http://eudml.org/doc/196205>.

@article{Gilotti2002,
abstract = {Given a class $\mathcal\{X\}$ of finite groups and a finite group $G$ , the authors study the subgroup $\mathcal\{X\}(G)$ intersection of maximal subgroups that do not belong to $\mathcal\{X\}$.},
author = {Gilotti, A. L., Tiberio, U.},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {generalized Frattini subgroups; intersections of maximal subgroups; finite soluble groups; finite nilpotent groups; formations},
language = {eng},
month = {10},
number = {3},
pages = {735-746},
publisher = {Unione Matematica Italiana},
title = {Intersecting maximals},
url = {http://eudml.org/doc/196205},
volume = {5-B},
year = {2002},
}

TY - JOUR
AU - Gilotti, A. L.
AU - Tiberio, U.
TI - Intersecting maximals
JO - Bollettino dell'Unione Matematica Italiana
DA - 2002/10//
PB - Unione Matematica Italiana
VL - 5-B
IS - 3
SP - 735
EP - 746
AB - Given a class $\mathcal{X}$ of finite groups and a finite group $G$ , the authors study the subgroup $\mathcal{X}(G)$ intersection of maximal subgroups that do not belong to $\mathcal{X}$.
LA - eng
KW - generalized Frattini subgroups; intersections of maximal subgroups; finite soluble groups; finite nilpotent groups; formations
UR - http://eudml.org/doc/196205
ER -

References

top
  1. SHIDOV, L. I., On maximal subgroups of finite groups, Sibirsk. Mat. Zh., 12, n. 3 (1971), 682-683. Zbl0219.20018MR284501
  2. GILOTTI, A. L.- TIBERIO, U., On the intersection of a certain class of maximal subgroups of a finite group, Arch. Math., 71 (1998), 89-94. Zbl0915.20010MR1631535
  3. GILOTTI, A. L.- TIBERIO, U., On the intersection of maximal non-supersoluble subgroups in a finite group, Boll. U.M.I (8) 3-B (2000), 691-695. Zbl0980.20013MR1801610
  4. TIBERIO, U., Sui sottogruppi massimali di un gruppo finito risolubile, Le Matematiche vol. XXXII, fasc. II, 258-270 (1977). 
  5. ASAAD, M.- RAMADAN, M., On the intersection of maximal subgroups of a finite group, Arch. Math., 71 (1998), 89-94. Zbl0787.20013MR1631535
  6. DOERK, K.- HAWKES, T., Finite Soluble Groups, Berlin-New York, 1992. Zbl0753.20001MR1169099
  7. SUZUKI, M., Group Theory I, Berlin-New York, 1982. Zbl0472.20001MR648772
  8. SUZUKI, M., Group Theory II, Berlin-New York, 1986. Zbl0586.20001MR815926
  9. CONWAY, J. H.- CURTIS, R. T.- NORTON, S. P.- PARKER, R. A.- WILSON, R. A., Atlas of Finite Groups, Oxford, 1985. Zbl0568.20001MR827219
  10. ROBINSON, D. J. S., A Course in the Theory of Groups, Berlin-Heidelberg-New York, 1991. Zbl0483.20001
  11. HUPPERT, B., Endliche Gruppen I, Berlin-Heidelberg-New York, 1967. Zbl0217.07201MR224703
  12. GORENSTEIN, D., Finite Groups, New-York, 1968. Zbl0185.05701MR231903
  13. BAER, R., Topics in finite Groups, minimal classes, Università di Firenze, Dipartimento di Matematica U. Dini, n. 6 (1974/75). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.