The Hartogs-type extension theorem for meromorphic mappings into q -complete complex spaces

Sergei Ivashkovich; Alessandro Silva

Bollettino dell'Unione Matematica Italiana (1999)

  • Volume: 2-B, Issue: 2, page 251-261
  • ISSN: 0392-4041

How to cite

top

Ivashkovich, Sergei, and Silva, Alessandro. "The Hartogs-type extension theorem for meromorphic mappings into $q$-complete complex spaces." Bollettino dell'Unione Matematica Italiana 2-B.2 (1999): 251-261. <http://eudml.org/doc/196242>.

@article{Ivashkovich1999,
author = {Ivashkovich, Sergei, Silva, Alessandro},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {-complete space; extension of meromorphic map; meromorphic mapping; Hartogs' figure; -convex function; strictly -convex function},
language = {eng},
month = {6},
number = {2},
pages = {251-261},
publisher = {Unione Matematica Italiana},
title = {The Hartogs-type extension theorem for meromorphic mappings into $q$-complete complex spaces},
url = {http://eudml.org/doc/196242},
volume = {2-B},
year = {1999},
}

TY - JOUR
AU - Ivashkovich, Sergei
AU - Silva, Alessandro
TI - The Hartogs-type extension theorem for meromorphic mappings into $q$-complete complex spaces
JO - Bollettino dell'Unione Matematica Italiana
DA - 1999/6//
PB - Unione Matematica Italiana
VL - 2-B
IS - 2
SP - 251
EP - 261
LA - eng
KW - -complete space; extension of meromorphic map; meromorphic mapping; Hartogs' figure; -convex function; strictly -convex function
UR - http://eudml.org/doc/196242
ER -

References

top
  1. BARLET, D., Convexité de l'espace des cycles, Bull. Soc. Math. France, 106 (1978), 373-397. Zbl0395.32009MR518045
  2. BARLET, D., Espace analytique reduit des cycles analytiques complexes compacts d'un espace analytique complexe de dimension finie, Seminaire Norguet IX, Lect. Notes Math. (1975), 1-157. Zbl0331.32008MR399503
  3. HARTOGS, F., Zur Theorie der analytischen Funktionen mehrerer unabhängiger Verändenlichen insbesondere über die Darstellung derselben durch Reihen, wel che nach Potenzen einer Veränderlichen fortschreiten, Math. Ann., 62 (1906), 1-88. MR1511365
  4. IVASHKOVICH, S., The Hartogs type extension Theorem for meromorphic maps into compact Kaehler manifolds, Invent. Math., 109 (1992), 47-54. Zbl0738.32008MR1168365
  5. IVASHKOVICH, S., Spherical shells as obstructions for the extension of holomorphic mappings, The Journal of Geometric Analysis, 2 (1992), 683-692. Zbl0772.32008MR1170480
  6. IVASHKOVICH, S., Continuity principle and extension properties of meromorphic mappings with values in non Kähler manifolds, MSRI Preprint No. 1997-033. Zbl1081.32010
  7. IVASHKOVICH, S., One example in concern with extension and separate analyticity properties of meromorphic mappings, to appear in Amer. J. Math. Zbl0945.32004MR1705000
  8. KLIMEK, M., Pluripotential theory, London. Math. Soc. Monographs, New Series6 (1991). Zbl0742.31001MR1150978
  9. OHSAWA, T., Completeness of Noncompact Analytic Spaces, Publ. RIMS Kyoto Univ., 20 (1984), 683-692. Zbl0568.32008MR759689
  10. REMMERT, R., Holomorphe und meromorphe Abbildungen komplexer Räume, Math. Ann., 133 (1957), 328-370. Zbl0079.10201MR92996
  11. SIU, Y.-T., Techniques of extension of analytic objects, Marcel Dekker, New York (1974). Zbl0294.32007MR361154
  12. SIU, Y.-T., Extension of meromorphic maps into Kähler manifolds, Ann. Math., 102 (1975), 421-462. Zbl0318.32007MR463498
  13. STEIN, K., Topics on holomorphic correspondences, Rocky Mountains J. Math., 2 (1972), 443-463. Zbl0272.32001MR311945

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.