# Sensitivity analysis of solutions to a class of quasi-variational inequalities

Samir Adly; Mohamed Ait Mansour; Laura Scrimali

Bollettino dell'Unione Matematica Italiana (2005)

- Volume: 8-B, Issue: 3, page 767-771
- ISSN: 0392-4041

## Access Full Article

top## Abstract

top## How to cite

topAdly, Samir, Ait Mansour, Mohamed, and Scrimali, Laura. "Sensitivity analysis of solutions to a class of quasi-variational inequalities." Bollettino dell'Unione Matematica Italiana 8-B.3 (2005): 767-771. <http://eudml.org/doc/196259>.

@article{Adly2005,

abstract = {We provide a sensitivity result for the solutions to the following finite-dimensional quasi-variational inequality $$ (QVI) \qquad u\in K(u), \langle C(u), v-u\rangle \geq0, \qquad \forall v \in K(u), $$ when both the operator $C$ and the convex $K$ are perturbed. In particular, we prove the Hölder continuity of the solution sets of the problems perturbed around the original problem. All the results may be extended to infinite-dimensional (QVI).},

author = {Adly, Samir, Ait Mansour, Mohamed, Scrimali, Laura},

journal = {Bollettino dell'Unione Matematica Italiana},

keywords = {Hölder continuity; quasi-variational inequalities; perturbations},

language = {eng},

month = {10},

number = {3},

pages = {767-771},

publisher = {Unione Matematica Italiana},

title = {Sensitivity analysis of solutions to a class of quasi-variational inequalities},

url = {http://eudml.org/doc/196259},

volume = {8-B},

year = {2005},

}

TY - JOUR

AU - Adly, Samir

AU - Ait Mansour, Mohamed

AU - Scrimali, Laura

TI - Sensitivity analysis of solutions to a class of quasi-variational inequalities

JO - Bollettino dell'Unione Matematica Italiana

DA - 2005/10//

PB - Unione Matematica Italiana

VL - 8-B

IS - 3

SP - 767

EP - 771

AB - We provide a sensitivity result for the solutions to the following finite-dimensional quasi-variational inequality $$ (QVI) \qquad u\in K(u), \langle C(u), v-u\rangle \geq0, \qquad \forall v \in K(u), $$ when both the operator $C$ and the convex $K$ are perturbed. In particular, we prove the Hölder continuity of the solution sets of the problems perturbed around the original problem. All the results may be extended to infinite-dimensional (QVI).

LA - eng

KW - Hölder continuity; quasi-variational inequalities; perturbations

UR - http://eudml.org/doc/196259

ER -

## References

top- AIT MANSOUR, M. - RIAHI, H., Sensitivity analysis for abstract equilibrium problems, J. Math. Anal. App., 306 No. 2 (2005), 684-691. Zbl1068.49005MR2136342
- ATTOUCH, H. - WETS, R., Quantitative stability of variational systems: I. The epigraphical distance, Trans. Am. math. Soc., 328 No. 2, (1991), 695-729. Zbl0753.49007MR1018570
- AUBIN, J.-P., Lipschitz behavior of solutions to convex minimization problems, Math. Oper. Res., 9 (1984), 87-111. Zbl0539.90085MR736641
- SCRIMALI, L., Quasi-Variational inequalities in Transportation networks, Math. Models. Meth. Appl. Sci, 14, No. 10 (2004), 1541-1560. Zbl1069.90026MR2095302
- SHAPIRO, A., Sensitivity analysis of generalized equations, Journal of Mathematical Sciences, 115 (2003), 2554-2565. Zbl1136.90482MR1992992
- SHAPIRO, A., Sensitivity analysis of parameterized variational inequalities, Mathematics of Operations Research, 30 (2005), 109-126. Zbl1082.49015MR2125140
- WALKUP, D. W. - J-B. WETS, R., A Lipschitzian of convex polyhedral, Proc. Amer. Math. Society, 23 (1969), 167-178. Zbl0182.25003MR246200

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.