Sensitivity analysis of solutions to a class of quasi-variational inequalities
Samir Adly; Mohamed Ait Mansour; Laura Scrimali
Bollettino dell'Unione Matematica Italiana (2005)
- Volume: 8-B, Issue: 3, page 767-771
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topAdly, Samir, Ait Mansour, Mohamed, and Scrimali, Laura. "Sensitivity analysis of solutions to a class of quasi-variational inequalities." Bollettino dell'Unione Matematica Italiana 8-B.3 (2005): 767-771. <http://eudml.org/doc/196259>.
@article{Adly2005,
	abstract = {We provide a sensitivity result for the solutions to the following finite-dimensional quasi-variational inequality $$ (QVI) \qquad u\in K(u), \langle C(u), v-u\rangle \geq0, \qquad \forall v \in K(u), $$ when both the operator $C$ and the convex $K$ are perturbed. In particular, we prove the Hölder continuity of the solution sets of the problems perturbed around the original problem. All the results may be extended to infinite-dimensional (QVI).},
	author = {Adly, Samir, Ait Mansour, Mohamed, Scrimali, Laura},
	journal = {Bollettino dell'Unione Matematica Italiana},
	keywords = {Hölder continuity; quasi-variational inequalities; perturbations},
	language = {eng},
	month = {10},
	number = {3},
	pages = {767-771},
	publisher = {Unione Matematica Italiana},
	title = {Sensitivity analysis of solutions to a class of quasi-variational inequalities},
	url = {http://eudml.org/doc/196259},
	volume = {8-B},
	year = {2005},
}
TY  - JOUR
AU  - Adly, Samir
AU  - Ait Mansour, Mohamed
AU  - Scrimali, Laura
TI  - Sensitivity analysis of solutions to a class of quasi-variational inequalities
JO  - Bollettino dell'Unione Matematica Italiana
DA  - 2005/10//
PB  - Unione Matematica Italiana
VL  - 8-B
IS  - 3
SP  - 767
EP  - 771
AB  - We provide a sensitivity result for the solutions to the following finite-dimensional quasi-variational inequality $$ (QVI) \qquad u\in K(u), \langle C(u), v-u\rangle \geq0, \qquad \forall v \in K(u), $$ when both the operator $C$ and the convex $K$ are perturbed. In particular, we prove the Hölder continuity of the solution sets of the problems perturbed around the original problem. All the results may be extended to infinite-dimensional (QVI).
LA  - eng
KW  - Hölder continuity; quasi-variational inequalities; perturbations
UR  - http://eudml.org/doc/196259
ER  - 
References
top- AIT MANSOUR, M. - RIAHI, H., Sensitivity analysis for abstract equilibrium problems, J. Math. Anal. App., 306 No. 2 (2005), 684-691. Zbl1068.49005MR2136342
- ATTOUCH, H. - WETS, R., Quantitative stability of variational systems: I. The epigraphical distance, Trans. Am. math. Soc., 328 No. 2, (1991), 695-729. Zbl0753.49007MR1018570
- AUBIN, J.-P., Lipschitz behavior of solutions to convex minimization problems, Math. Oper. Res., 9 (1984), 87-111. Zbl0539.90085MR736641
- SCRIMALI, L., Quasi-Variational inequalities in Transportation networks, Math. Models. Meth. Appl. Sci, 14, No. 10 (2004), 1541-1560. Zbl1069.90026MR2095302
- SHAPIRO, A., Sensitivity analysis of generalized equations, Journal of Mathematical Sciences, 115 (2003), 2554-2565. Zbl1136.90482MR1992992
- SHAPIRO, A., Sensitivity analysis of parameterized variational inequalities, Mathematics of Operations Research, 30 (2005), 109-126. Zbl1082.49015MR2125140
- WALKUP, D. W. - J-B. WETS, R., A Lipschitzian of convex polyhedral, Proc. Amer. Math. Society, 23 (1969), 167-178. Zbl0182.25003MR246200
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
  
 