# Computing $r$-removed $P$-orderings and $P$-orderings of order $h$

Keith Johnson^{[1]}

- [1] Department of Mathematics, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada

Actes des rencontres du CIRM (2010)

- Volume: 2, Issue: 2, page 33-40
- ISSN: 2105-0597

## Access Full Article

top## Abstract

top## How to cite

topJohnson, Keith. "Computing $r$-removed $P$-orderings and $P$-orderings of order $h$." Actes des rencontres du CIRM 2.2 (2010): 33-40. <http://eudml.org/doc/196277>.

@article{Johnson2010,

abstract = {We develop a recursive method for computing the $r$-removed $P$-orderings and $P$-orderings of order $h\,,$ the characteristic sequences associated to these and limits associated to these sequences for subsets $S$ of a Dedekind domain $D.$ This method is applied to compute these objects for $S=\mathbb\{Z\}$ and $S=\mathbb\{Z\}\backslash p\mathbb\{Z\}$.},

affiliation = {Department of Mathematics, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada},

author = {Johnson, Keith},

journal = {Actes des rencontres du CIRM},

keywords = {integer valued polynomials; $p$-orderings; $p$-sequence; divided differences; finite differences},

language = {eng},

number = {2},

pages = {33-40},

publisher = {CIRM},

title = {Computing $r$-removed $P$-orderings and $P$-orderings of order $h$},

url = {http://eudml.org/doc/196277},

volume = {2},

year = {2010},

}

TY - JOUR

AU - Johnson, Keith

TI - Computing $r$-removed $P$-orderings and $P$-orderings of order $h$

JO - Actes des rencontres du CIRM

PY - 2010

PB - CIRM

VL - 2

IS - 2

SP - 33

EP - 40

AB - We develop a recursive method for computing the $r$-removed $P$-orderings and $P$-orderings of order $h\,,$ the characteristic sequences associated to these and limits associated to these sequences for subsets $S$ of a Dedekind domain $D.$ This method is applied to compute these objects for $S=\mathbb{Z}$ and $S=\mathbb{Z}\backslash p\mathbb{Z}$.

LA - eng

KW - integer valued polynomials; $p$-orderings; $p$-sequence; divided differences; finite differences

UR - http://eudml.org/doc/196277

ER -

## References

top- D. Barsky, Fonctions $k$-lipschitziennes sur un anneau local et polynômes à valeurs entières, Bull. Soc. Math. France 101 (1973), 397-411 Zbl0291.12107MR371863
- M. Bhargava, P.-J. Cahen, J. Yeramian, Finite Generation Properties for Various Rings of Integer Valued Polynomials , J. Algebra 322 (2009), 1129-1150 Zbl1177.13051MR2537676
- M. Bhargava, The factorial function and generalizations, Am. Math. Monthly 107 (2000), 783-799 Zbl0987.05003MR1792411
- M. Bhargava, On $P$-orderings, Rings of Integer Valued Polynomials and Ultrametric Analysis, J. Amer. Math. Soc. 22(4) (2009), 963-993 Zbl1219.11047MR2525777
- M. Bhargava, $P$-orderings and polynomial functions on arbitrary subsets of Dedekind rings, J. Reine Angew. Math. 490 (1997), 101-127 Zbl0899.13022MR1468927
- L. Carlitz, A Note on Integral Valued Polynomials, Indagationes Math., Ser. A 62 (1959), 294-299 Zbl0100.27102MR108462
- P.-J. Cahen, J.-L. Chabert, Integer Valued Polynomials, (1997), Amer. Math. Soc. Zbl0884.13010MR1421321
- K. Johnson, $P$-orderings of Finite Subsets of Dedekind Domains, J. Algebraic Combinatorics 30 (2009), 233-253 Zbl1180.13024MR2525060
- K. Johnson, Limits of characteristic sequences of integer-valued polynomials on homogeneous sets, J. Number Theory 129 (2009), 2933-2942 Zbl1233.11030MR2560844

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.