Un anneau de Prüfer
H. Lombardi[1]
- [1] Équipe de Mathématiques, UMR CNRS 6623, UFR des Sciences et Techniques, Université de Franche-Comté, 25030 BESANCON cedex, FRANCE
Actes des rencontres du CIRM (2010)
- Volume: 2, Issue: 2, page 59-69
- ISSN: 2105-0597
Access Full Article
topAbstract
topHow to cite
topLombardi, H.. "Un anneau de Prüfer." Actes des rencontres du CIRM 2.2 (2010): 59-69. <http://eudml.org/doc/196278>.
@article{Lombardi2010,
abstract = {Let $E$ be the ring of integer valued polynomials over $\mathbb\{Z\}$. This ring is known to be a Prüfer domain. But it seems there does not exist an algorithm for inverting a nonzero finitely generated ideal of $E$. In this note we show how to obtain such an algorithm by deciphering a classical abstract proof that uses localisations of $E$ at all prime ideals of $E$. This confirms a general program of deciphering abstract classical proofs in order to obtain algorithmic proofs.},
affiliation = {Équipe de Mathématiques, UMR CNRS 6623, UFR des Sciences et Techniques, Université de Franche-Comté, 25030 BESANCON cedex, FRANCE},
author = {Lombardi, H.},
journal = {Actes des rencontres du CIRM},
keywords = {Prüfer rings; Integer-valued polynomials; Constructive mathematics},
language = {fre},
number = {2},
pages = {59-69},
publisher = {CIRM},
title = {Un anneau de Prüfer},
url = {http://eudml.org/doc/196278},
volume = {2},
year = {2010},
}
TY - JOUR
AU - Lombardi, H.
TI - Un anneau de Prüfer
JO - Actes des rencontres du CIRM
PY - 2010
PB - CIRM
VL - 2
IS - 2
SP - 59
EP - 69
AB - Let $E$ be the ring of integer valued polynomials over $\mathbb{Z}$. This ring is known to be a Prüfer domain. But it seems there does not exist an algorithm for inverting a nonzero finitely generated ideal of $E$. In this note we show how to obtain such an algorithm by deciphering a classical abstract proof that uses localisations of $E$ at all prime ideals of $E$. This confirms a general program of deciphering abstract classical proofs in order to obtain algorithmic proofs.
LA - fre
KW - Prüfer rings; Integer-valued polynomials; Constructive mathematics
UR - http://eudml.org/doc/196278
ER -
References
top- Bishop E.Foundations of Constructive Analysis. McGraw Hill, (1967). Zbl0183.01503MR221878
- Bishop E., Bridges D.Constructive Analysis. Springer-Verlag, (1985). Zbl0656.03042MR804042
- Bridges D., Richman F.Varieties of Constructive Mathematics. London Math. Soc. LNS 97. Cambridge University Press (1987). Zbl0618.03032MR890955
- Chabert J.-L.Anneaux de polynômes à valeurs entières et anneaux de Fatou. Bull. soc. math. France, 99, (1971), 273–283. Zbl0202.32802MR302636
- Chabert J.-L.Un anneau de Prüfer. Journal of Algebra, 107, (1987), 1–16. Zbl0635.13004MR883864
- Coquand T.Sur un théorème de Kronecker concernant les variétés algébriques. C. R. Acad. Sci. Paris, Ser. I, 338, (2004), 291–294. Zbl1039.13002MR2076498
- Coquand T.On seminormality. Journal of Algebra, 305, (2006), 585–602. Zbl1102.13005MR2264145
- Coquand T.Space of valuations, Annals of Pure and Applied Logic, 157, (2009), 97-109. Zbl1222.03072MR2499701
- Coquand T., Lombardi H.A logical approach to abstract algebra. (survey) Math. Struct. in Comput. Science, 16, (2006), 885–900. Zbl1118.03059MR2268347
- Coquand T., Lombardi H., Quitté C.Generating non-Nœtherian modules constructively. Manuscripta mathematica, 115, (2004), 513–520. Zbl1059.13006MR2103665
- Coquand T., Lombardi H., Schuster P.Spectral Schemes as Ringed Lattices. Annals of Mathematics and Artificial Intelligence. 56, (2009), 339–360. Zbl1254.03114MR2595208
- Coquand T., Quitté C.Constructive Finite Free Resolutions. Preprint 2011. Zbl1239.13022
- Coste M., Lombardi H., Roy M.-F.Dynamical method in algebra : Effective Nullstellensätze. Annals of Pure and Applied Logic 111, (2001) 203–256. Zbl0992.03076MR1848137
- Díaz-Toca G., Lombardi H.Dynamic Galois Theory. Journal of Symbolic Computation. 45, (2010) 1316–1329. Zbl1237.12002MR2733381
- Ducos L., Lombardi H., Quitté C., Salou M.Théorie algorithmique des anneaux arithmétiques, des anneaux de Prüfer et des anneaux de Dedekind. Journal of Algebra, 281, (2004), 604–650. Zbl1093.13015MR2098786
- Gilmer R.Multiplicative Ideal Theory. Queens papers in pure and applied Math, vol. 90, 1992. Zbl0804.13001MR1204267
- Jensen C.Arithmetical rings. Acta Mathematica Academiae Scientiarum Hungaricae, 17, (1966) 115–123. Birkhäuser, (1991). Zbl0141.03502MR190163
- Lombardi H.Algèbre dynamique, espaces topologiques sans points et programme de Hilbert. Annals of Pure and Applied Logic, 137, (2006), 256–290. Zbl1077.03039MR2182105
- Lombardi H., Quitté C.Constructions cachées en algèbre abstraite (2) Le principe local global, dans : Commutative ring theory and applications, eds. Fontana M., Kabbaj S.-E., Wiegand S. Lecture notes in pure and applied mathematics vol 231. M. Dekker, (2002). p. 461–476. Zbl1061.13007MR2029844
- Lombardi H., Quitté C.Algèbre commutative. Méthodes constructives. Livre à paraître.
- Mines R., Richman F., Ruitenburg W.A Course in Constructive Algebra. Universitext. Springer-Verlag, (1988). Zbl0725.03044MR919949
- Richman F.Non trivial uses of trivial rings. Proc. Amer. Math. Soc., 103, (1988), 1012–1014. Zbl0683.13004MR954974
- Yengui I.Making the use of maximal ideals constructive. Theoretical Computer Science, 392, (2008) 174–178. Zbl1141.13303MR2394992
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.