Un anneau de Prüfer

H. Lombardi[1]

  • [1] Équipe de Mathématiques, UMR CNRS 6623, UFR des Sciences et Techniques, Université de Franche-Comté, 25030 BESANCON cedex, FRANCE

Actes des rencontres du CIRM (2010)

  • Volume: 2, Issue: 2, page 59-69
  • ISSN: 2105-0597

Abstract

top
Let E be the ring of integer valued polynomials over . This ring is known to be a Prüfer domain. But it seems there does not exist an algorithm for inverting a nonzero finitely generated ideal of E . In this note we show how to obtain such an algorithm by deciphering a classical abstract proof that uses localisations of E at all prime ideals of E . This confirms a general program of deciphering abstract classical proofs in order to obtain algorithmic proofs.

How to cite

top

Lombardi, H.. "Un anneau de Prüfer." Actes des rencontres du CIRM 2.2 (2010): 59-69. <http://eudml.org/doc/196278>.

@article{Lombardi2010,
abstract = {Let $E$ be the ring of integer valued polynomials over $\mathbb\{Z\}$. This ring is known to be a Prüfer domain. But it seems there does not exist an algorithm for inverting a nonzero finitely generated ideal of $E$. In this note we show how to obtain such an algorithm by deciphering a classical abstract proof that uses localisations of $E$ at all prime ideals of $E$. This confirms a general program of deciphering abstract classical proofs in order to obtain algorithmic proofs.},
affiliation = {Équipe de Mathématiques, UMR CNRS 6623, UFR des Sciences et Techniques, Université de Franche-Comté, 25030 BESANCON cedex, FRANCE},
author = {Lombardi, H.},
journal = {Actes des rencontres du CIRM},
keywords = {Prüfer rings; Integer-valued polynomials; Constructive mathematics},
language = {fre},
number = {2},
pages = {59-69},
publisher = {CIRM},
title = {Un anneau de Prüfer},
url = {http://eudml.org/doc/196278},
volume = {2},
year = {2010},
}

TY - JOUR
AU - Lombardi, H.
TI - Un anneau de Prüfer
JO - Actes des rencontres du CIRM
PY - 2010
PB - CIRM
VL - 2
IS - 2
SP - 59
EP - 69
AB - Let $E$ be the ring of integer valued polynomials over $\mathbb{Z}$. This ring is known to be a Prüfer domain. But it seems there does not exist an algorithm for inverting a nonzero finitely generated ideal of $E$. In this note we show how to obtain such an algorithm by deciphering a classical abstract proof that uses localisations of $E$ at all prime ideals of $E$. This confirms a general program of deciphering abstract classical proofs in order to obtain algorithmic proofs.
LA - fre
KW - Prüfer rings; Integer-valued polynomials; Constructive mathematics
UR - http://eudml.org/doc/196278
ER -

References

top
  1. Bishop E.Foundations of Constructive Analysis. McGraw Hill, (1967). Zbl0183.01503MR221878
  2. Bishop E., Bridges D.Constructive Analysis. Springer-Verlag, (1985). Zbl0656.03042MR804042
  3. Bridges D., Richman F.Varieties of Constructive Mathematics. London Math. Soc. LNS 97. Cambridge University Press (1987). Zbl0618.03032MR890955
  4. Chabert J.-L.Anneaux de polynômes à valeurs entières et anneaux de Fatou. Bull. soc. math. France, 99, (1971), 273–283. Zbl0202.32802MR302636
  5. Chabert J.-L.Un anneau de Prüfer. Journal of Algebra, 107, (1987), 1–16. Zbl0635.13004MR883864
  6. Coquand T.Sur un théorème de Kronecker concernant les variétés algébriques. C. R. Acad. Sci. Paris, Ser. I, 338, (2004), 291–294. Zbl1039.13002MR2076498
  7. Coquand T.On seminormality. Journal of Algebra, 305, (2006), 585–602. Zbl1102.13005MR2264145
  8. Coquand T.Space of valuations, Annals of Pure and Applied Logic, 157, (2009), 97-109. Zbl1222.03072MR2499701
  9. Coquand T., Lombardi H.A logical approach to abstract algebra. (survey) Math. Struct. in Comput. Science, 16, (2006), 885–900. Zbl1118.03059MR2268347
  10. Coquand T., Lombardi H., Quitté C.Generating non-Nœtherian modules constructively. Manuscripta mathematica, 115, (2004), 513–520. Zbl1059.13006MR2103665
  11. Coquand T., Lombardi H., Schuster P.Spectral Schemes as Ringed Lattices. Annals of Mathematics and Artificial Intelligence. 56, (2009), 339–360. Zbl1254.03114MR2595208
  12. Coquand T., Quitté C.Constructive Finite Free Resolutions. Preprint 2011. Zbl1239.13022
  13. Coste M., Lombardi H., Roy M.-F.Dynamical method in algebra : Effective Nullstellensätze. Annals of Pure and Applied Logic 111, (2001) 203–256. Zbl0992.03076MR1848137
  14. Díaz-Toca G., Lombardi H.Dynamic Galois Theory. Journal of Symbolic Computation. 45, (2010) 1316–1329. Zbl1237.12002MR2733381
  15. Ducos L., Lombardi H., Quitté C., Salou M.Théorie algorithmique des anneaux arithmétiques, des anneaux de Prüfer et des anneaux de Dedekind. Journal of Algebra, 281, (2004), 604–650. Zbl1093.13015MR2098786
  16. Gilmer R.Multiplicative Ideal Theory. Queens papers in pure and applied Math, vol. 90, 1992. Zbl0804.13001MR1204267
  17. Jensen C.Arithmetical rings. Acta Mathematica Academiae Scientiarum Hungaricae, 17, (1966) 115–123. Birkhäuser, (1991). Zbl0141.03502MR190163
  18. Lombardi H.Algèbre dynamique, espaces topologiques sans points et programme de Hilbert. Annals of Pure and Applied Logic, 137, (2006), 256–290. Zbl1077.03039MR2182105
  19. Lombardi H., Quitté C.Constructions cachées en algèbre abstraite (2) Le principe local global, dans : Commutative ring theory and applications, eds. Fontana M., Kabbaj S.-E., Wiegand S. Lecture notes in pure and applied mathematics vol 231. M. Dekker, (2002). p. 461–476. Zbl1061.13007MR2029844
  20. Lombardi H., Quitté C.Algèbre commutative. Méthodes constructives. Livre à paraître. 
  21. Mines R., Richman F., Ruitenburg W.A Course in Constructive Algebra. Universitext. Springer-Verlag, (1988). Zbl0725.03044MR919949
  22. Richman F.Non trivial uses of trivial rings. Proc. Amer. Math. Soc., 103, (1988), 1012–1014. Zbl0683.13004MR954974
  23. Yengui I.Making the use of maximal ideals constructive. Theoretical Computer Science, 392, (2008) 174–178. Zbl1141.13303MR2394992

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.