Star operations in extensions of integral domains
David F. Anderson[1]; Said El Baghdadi[2]; Muhammad Zafrullah[3]
- [1] Department of Mathematics, University of Tennessee Knoxville, TN 37996, USA
- [2] Department of Mathematics, Faculté des Sciences et Techniques P.O. Box 523, Beni Mellal, Morocco
- [3] 57 Colgate Street, Pocatello, ID 83201, USA
Actes des rencontres du CIRM (2010)
- Volume: 2, Issue: 2, page 87-89
- ISSN: 2105-0597
Access Full Article
topAbstract
topHow to cite
topAnderson, David F., El Baghdadi, Said, and Zafrullah, Muhammad. "Star operations in extensions of integral domains." Actes des rencontres du CIRM 2.2 (2010): 87-89. <http://eudml.org/doc/196282>.
@article{Anderson2010,
abstract = {An extension $D \subseteq R$ of integral domains is strongly$t$-compatible (resp., $t$-compatible) if $(IR)^\{-1\} = (I^\{-1\}R)_\{v\}$ (resp., $(IR)_\{v\} = (I_\{v\}R)_\{v\})$ for every nonzero finitely generated fractional ideal $I$ of $D$. We show that strongly $t$-compatible implies $t$-compatible and give examples to show that the converse does not hold. We also indicate situations where strong $t$-compatibility and its variants show up naturally. In addition, we study integral domains $D$ such that $D \subseteq R$ is strongly $t$-compatible (resp., $t$-compatible) for every overring $R$ of $D$.},
affiliation = {Department of Mathematics, University of Tennessee Knoxville, TN 37996, USA; Department of Mathematics, Faculté des Sciences et Techniques P.O. Box 523, Beni Mellal, Morocco; 57 Colgate Street, Pocatello, ID 83201, USA},
author = {Anderson, David F., El Baghdadi, Said, Zafrullah, Muhammad},
journal = {Actes des rencontres du CIRM},
keywords = {Star operation; $t$-linked; $t$-compatible; strongly $t$-compatible; domain extensions; Prüfer domain},
language = {eng},
number = {2},
pages = {87-89},
publisher = {CIRM},
title = {Star operations in extensions of integral domains},
url = {http://eudml.org/doc/196282},
volume = {2},
year = {2010},
}
TY - JOUR
AU - Anderson, David F.
AU - El Baghdadi, Said
AU - Zafrullah, Muhammad
TI - Star operations in extensions of integral domains
JO - Actes des rencontres du CIRM
PY - 2010
PB - CIRM
VL - 2
IS - 2
SP - 87
EP - 89
AB - An extension $D \subseteq R$ of integral domains is strongly$t$-compatible (resp., $t$-compatible) if $(IR)^{-1} = (I^{-1}R)_{v}$ (resp., $(IR)_{v} = (I_{v}R)_{v})$ for every nonzero finitely generated fractional ideal $I$ of $D$. We show that strongly $t$-compatible implies $t$-compatible and give examples to show that the converse does not hold. We also indicate situations where strong $t$-compatibility and its variants show up naturally. In addition, we study integral domains $D$ such that $D \subseteq R$ is strongly $t$-compatible (resp., $t$-compatible) for every overring $R$ of $D$.
LA - eng
KW - Star operation; $t$-linked; $t$-compatible; strongly $t$-compatible; domain extensions; Prüfer domain
UR - http://eudml.org/doc/196282
ER -
References
top- D. D. Anderson, Star operations induced by overrings, Comm. Algebra 16(1988) 2535–2553. Zbl0672.13001MR955324
- D. D. Anderson, D.F. Anderson and M. Zafrullah, Rings between D[X] and K[X], Houston J. Math. 17(1)(1991) 109–129. Zbl0736.13015MR1107192
- D. D. Anderson, E. Houston and M. Zafrullah, t-linked extensions, the -class group and Nagata’s theorem, J. Pure Appl. Algebra 86(1993) 109–124. Zbl0777.13002MR1215640
- D. F. Anderson, A general theory of class group, Comm. Algebra 16(1988) 805–847. Zbl0648.13002MR932636
- D. F. Anderson, S. El Baghdadi and S. Kabbaj, The class group of domains, in: Advances in commutative ring theory, Lecture Notes in Pure and Appl. Math. 205, Dekker, New York, 1999, pp. 73–85. Zbl0979.13010MR1767451
- D. F. Anderson and A. Rykaert, The class group of , J. Pure Appl. Algebra 52(1988) 199–212. Zbl0668.13013MR952078
- J. Arnold and J. Brewer, On flat overrings, ideal transforms and generalized transforms of a commutative ring, J. Algebra 18(1971) 254–263. Zbl0218.13019MR276215
- V. Barucci, S. Gabelli and M. Roitman, The class group of a strongly Mori domain, Comm. Algebra 22(1994) 173–211. Zbl0828.13012MR1255678
- E. Bastida and R. Gilmer, Overrings and divisorial ideals of rings of the form , Michigan Math. J. 20(1973) 79–95. Zbl0239.13001MR323782
- J. Brewer and E. Rutter, constructions with general overrings, Michigan Math. J. 23(1976) 33–42. Zbl0318.13007MR401744
- P.-J. Cahen, S. Gabelli and E. G. Houston, Mori domains of integer-valued polynomials, J. Pure Appl. Algebra 153(2000) 1–15. Zbl0978.13010MR1781539
- D. L. Costa, J. L. Mott and M. Zafrullah, The construction , J. Algebra 53(1978) 423–439. Zbl0407.13003MR506224
- D. L. Costa, J. L. Mott and M. Zafrullah, Overrings and dimensions of general constructions, J. Natur. Sci. and Math. 26(2) (1986) 7–14. Zbl0621.13010MR871405
- E. Davis, Overrings of commutative rings, II: Integrally closed overrings, Trans. Amer. Math. Soc. 110 (1964) 196–212. Zbl0128.26005MR156868
- D. Dobbs, E. Houston, T. Lucas, and M. Zafrullah, -linked overrings and Prüfer -multilpication domains, Comm. Algebra 17(1989) 2835–2852. Zbl0691.13015MR1025612
- D. Dobbs, E. Houston, T. Lucas, M. Roitman and M. Zafrullah, On -linked overrings, Comm. Algebra 20(1992) 1463–1488. Zbl0791.13005MR1157918
- S. El Baghdadi, On TV-domains, in: Commutative Algebra and its Applications, de Gruyter Proceedings in Mathematics, de Gruyter, Berlin, 2009, pp. 207–212. Zbl1177.13008MR2606286
- M. Fontana and S. Gabelli, On the class group and the local class group of a pullback, J. Algebra 181(1996) 803–835. Zbl0871.13006MR1386580
- M. Fontana and J. Huckaba, Localizing systems and semistar operations, in: Non-Noetherian Commutative Ring Theory (S. Chapman and S. Glaz, Eds.) Math. Appl. 520, Kluwer Acad. Publ., Dordrecht, 2000, pp. 169–197. Zbl1047.13002MR1858162
- M. Fontana, J. Huckaba and I. Papick, Prüfer domains, Monographs and Textbooks in Pure and Applied Mathematics 203, Marcel Dekker, New York, 1997. Zbl0861.13006MR1413297
- M. Fontana and N. Popescu, On a class of domains having Prüfer integral closure: the QR-domains, in: Commutative Ring Theory, Lecture Notes in Pure and Appl. Math. 185, Dekker, New York, 1997, pp. 303–312. Zbl0879.13011MR1422488
- S. Gabelli, On Nagata’s theorem for the class group II, in: Commutative algebra and algebraic geometry, Lecture Notes in Pure and Appl. Math. 206, Dekker, New York, 1999, pp. 117–142. Zbl0945.13005MR1702102
- R. W. Gilmer, Multiplicative Ideal Theory, Marcel-Dekker, New York, 1972. Zbl0248.13001MR427289
- R. Gilmer and W. Heinzer, Intersections of quotient rings of an integral domain, J. Math. Kyoto Univ. 7(1967) 133–150. Zbl0166.30601MR223349
- R. Gilmer and J. Ohm, Integral domains with quotient overrings, Math. Ann. 153(1964) 813–818. Zbl0128.26004MR159835
- J. R. Hedstrom and E. G. Houston, Some remarks on star-operations, J. Pure Appl. Algebra 18(1980) 37–44. Zbl0462.13003MR578564
- W. Heinzer, Quotient overrings of integral domains, Mathematika 17(1970) 139–148. Zbl0201.37202MR265334
- W. Heinzer and I. J. Papick, The radical trace property, J. Algebra 112(1988) 110–121. Zbl0641.13001MR921967
- E. Houston, personal communication to M. Zafrullah.
- E. Houston and M. Zafrullah, Integral domains in which each -ideal is divisorial, Michigan Math. J. 35(1988) 291–300. Zbl0675.13001MR959276
- J. Huckaba and I. J. Papick, When the dual of an ideal is a ring, Manuscripta Math. 37(1982) 67–85. Zbl0484.13001MR649566
- B. G. Kang, Prufer v-multiplication domains and the ring , J. Algebra 123(1989) 151–170. Zbl0668.13002MR1000481
- T. G. Lucas, Examples built with D + M, A + XB[X], and other pullback constructions, in: Non-Noetherian Commutative Ring Theory (S. Chapman and S. Glaz, Eds.) Math. Appl. 520, Kluwer Acad. Publ., Dordrecht, 2000, pp. 341–368. Zbl1005.13002MR1858170
- A. Mimouni, Integral domains in which each ideal is a -ideal, Comm. Algebra 33(2005) 1345–1355. Zbl1079.13016MR2149062
- T. Nishimura, On the -ideal of an integral domain, Bull. Kyoto Gakugei Univ. (ser. B) 17(1961) 47–50. Zbl0266.13016MR142574
- J. Querre, Sur les anneaux reflexifs, Can. J. Math. 6(1975) 1222–1228. Zbl0335.13010MR414537
- J. Querre, Idéaux divisoriels d’un anneau de polynômes, J. Algebra 60(1980) 270–284. Zbl0441.13012MR575795
- F. Richman, Generalized quotient rings, Proc. Amer. Math. Soc. 16(1965) 794–799. Zbl0145.27406MR181653
- A. Rykaert, Sur le groupe des classes et le groupe local des classes d’un anneau intègre, Ph.D Thesis, Universite Claude Bernard de Lyon I, 1986.
- M. Zafrullah, Finite conductor domains, Manuscripta Math. 24(1978) 191–203. Zbl0383.13013MR485847
- M. Zafrullah, Well behaved prime t-ideals, J. Pure Appl. Algebra 65(1990) 199–207. Zbl0705.13001MR1068255
- M. Zafrullah, Putting t-invertibility to use, in: Non-Noetherian Commutative Ring Theory (S. Chapman and S. Glaz, Eds.) Math. Appl. 520, Kluwer Acad. Publ., Dordrecht, 2000, pp. 429–457. Zbl0988.13003MR1858174
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.