Asymptotic stability condition for stochastic Markovian systems of differential equations

Efraim Shmerling

Mathematica Bohemica (2010)

  • Volume: 135, Issue: 4, page 443-448
  • ISSN: 0862-7959

Abstract

top
Asymptotic stability of the zero solution for stochastic jump parameter systems of differential equations given by d X ( t ) = A ( ξ ( t ) ) X ( t ) d t + H ( ξ ( t ) ) X ( t ) d w ( t ) , where ξ ( t ) is a finite-valued Markov process and w(t) is a standard Wiener process, is considered. It is proved that the existence of a unique positive solution of the system of coupled Lyapunov matrix equations derived in the paper is a necessary asymptotic stability condition.

How to cite

top

Shmerling, Efraim. "Asymptotic stability condition for stochastic Markovian systems of differential equations." Mathematica Bohemica 135.4 (2010): 443-448. <http://eudml.org/doc/196332>.

@article{Shmerling2010,
abstract = {Asymptotic stability of the zero solution for stochastic jump parameter systems of differential equations given by $\{\rm d\} X(t) = A(\xi (t))X(t) \{\rm d\} t + H(\xi (t))X(t) \{\rm d\} w(t)$, where $\xi (t)$ is a finite-valued Markov process and w(t) is a standard Wiener process, is considered. It is proved that the existence of a unique positive solution of the system of coupled Lyapunov matrix equations derived in the paper is a necessary asymptotic stability condition.},
author = {Shmerling, Efraim},
journal = {Mathematica Bohemica},
keywords = {jump parameter system; Markov process; asymptotic stability; jump parameter system; Markov process; asymptotic stability},
language = {eng},
number = {4},
pages = {443-448},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Asymptotic stability condition for stochastic Markovian systems of differential equations},
url = {http://eudml.org/doc/196332},
volume = {135},
year = {2010},
}

TY - JOUR
AU - Shmerling, Efraim
TI - Asymptotic stability condition for stochastic Markovian systems of differential equations
JO - Mathematica Bohemica
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 135
IS - 4
SP - 443
EP - 448
AB - Asymptotic stability of the zero solution for stochastic jump parameter systems of differential equations given by ${\rm d} X(t) = A(\xi (t))X(t) {\rm d} t + H(\xi (t))X(t) {\rm d} w(t)$, where $\xi (t)$ is a finite-valued Markov process and w(t) is a standard Wiener process, is considered. It is proved that the existence of a unique positive solution of the system of coupled Lyapunov matrix equations derived in the paper is a necessary asymptotic stability condition.
LA - eng
KW - jump parameter system; Markov process; asymptotic stability; jump parameter system; Markov process; asymptotic stability
UR - http://eudml.org/doc/196332
ER -

References

top
  1. Bitmead, R. R., Anderson, B. D. O., 10.1109/TAC.1980.1102427, IEEE Trans. Autom. Control 25 (1980), 782-787. (1980) Zbl0451.93065MR0583456DOI10.1109/TAC.1980.1102427
  2. Blair, W. P. Jr., Sworder, D. D., 10.1109/TSMC.1975.5408409, IEEE Trans. Systems Man Cyber. 5 (1975), 341-346. (1975) Zbl0302.90013MR0469423DOI10.1109/TSMC.1975.5408409
  3. Blankenship, G., 10.1109/TAC.1977.1101612, IEEE Trans. Autom. Control 22 (1977), 834-838. (1977) Zbl0362.93033MR0470386DOI10.1109/TAC.1977.1101612
  4. Blom, H. A. P., Bar-Shalom, Y., 10.1109/9.1299, IEEE Trans. Autom. Control 33 (1988), 780-783. (1988) Zbl0649.93065DOI10.1109/9.1299
  5. Costa, O. L. V., Fragoso, M. D., 10.1006/jmaa.1993.1341, J. Math. Anal. Appl. 179 (1993), 154-178. (1993) Zbl0790.93108MR1244955DOI10.1006/jmaa.1993.1341
  6. Souza, C. E. de, Fragoso, M. D., H control for linear systems with Markovian jumping parameters, Control Theory Adv. Tech. 9 (1993), 457-466. (1993) MR1236777
  7. Fang, Y., 10.1109/9.557580, IEEE Trans. Autom. Control 42 (1997), 378-382. (1997) Zbl0870.93048MR1435826DOI10.1109/9.557580
  8. Feng, X., Loparo, K. A., Ji, Y., Chizeck, H. J., 10.1109/9.109637, IEEE Trans. Autom. Control 37 (1992), 1884-1892. (1992) Zbl0747.93079MR1139614DOI10.1109/9.109637
  9. Fragoso, M. D., Costa, O. L. V., 10.1137/S0363012903434753, SIAM J. Control Optim. 44 (2005), 1165-1191. (2005) MR2177308DOI10.1137/S0363012903434753
  10. Ji, Y., Chizeck, H. J., 10.1109/9.57016, IEEE Trans. Autom. Control 35 (1990), 777-788. (1990) MR1058362DOI10.1109/9.57016
  11. Ji, Y., Chizeck, H. J., Jump linear quadratic Gaussian control: steady-state solution and testable conditions, Control Theory Adv. Tech. 6 (1990), 289-319. (1990) MR1080011
  12. Leizarowitz, A., 10.1080/17442508808833523, Stochastics 24 (1988), 335-356. (1988) Zbl0669.34060MR0972970DOI10.1080/17442508808833523
  13. Loparo, K. A., 10.1080/07362998408809033, Stochastic Anal. Appl. 2 (1984), 193-228. (1984) MR0746436DOI10.1080/07362998408809033
  14. Mao, X., Yuan, C., Stochastic Differential Equations with Markovian Switching, Imperial College Press, London (2006). (2006) Zbl1126.60002MR2256095
  15. Mariton, M., 10.1016/0167-6911(88)90098-9, Systems-Control Letts. 11 (1988), 393-397. (1988) Zbl0672.93073MR0971460DOI10.1016/0167-6911(88)90098-9
  16. Morozan, T., 10.1080/07362998308809016, Stochastic Anal. Appl. 1 (1983), 219-225. (1983) Zbl0525.93070MR0709081DOI10.1080/07362998308809016
  17. Shmerling, E., Hochberg, K. J., 10.1080/17442500802006436, Stochastics 80 (2008), 513-518. (2008) Zbl1153.60389MR2460246DOI10.1080/17442500802006436

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.