Gradient estimates for a nonlinear equation on complete noncompact manifolds
Communications in Mathematics (2011)
- Volume: 19, Issue: 1, page 73-84
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topZhang, Jing, and Ma, Bingqing. "Gradient estimates for a nonlinear equation $\Delta _fu+cu^{-\alpha }=0$ on complete noncompact manifolds." Communications in Mathematics 19.1 (2011): 73-84. <http://eudml.org/doc/196367>.
@article{Zhang2011,
abstract = {Let $(M,g)$ be a complete noncompact Riemannian manifold. We consider gradient estimates on positive solutions to the following nonlinear equation $\Delta _fu+cu^\{-\alpha \}=0$ in $M$, where $\alpha $, $c$ are two real constants and $\alpha >0$, $f$ is a smooth real valued function on $M$ and $\Delta _f=\Delta -\nabla f\nabla $. When $N$ is finite and the $N$-Bakry-Emery Ricci tensor is bounded from below, we obtain a gradient estimate for positive solutions of the above equation. Moreover, under the assumption that $\infty $-Bakry-Emery Ricci tensor is bounded from below and $|\nabla f|$ is bounded from above, we also obtain a gradient estimate for positive solutions of the above equation. It extends the results of Yang [Yang, Y.Y. Gradient estimates for the equation $\Delta u+cu^\{-\alpha \}=0$ on Riemannian manifolds Acta. Math. Sin. 26(B) 2010 1177–1182].},
author = {Zhang, Jing, Ma, Bingqing},
journal = {Communications in Mathematics},
keywords = {gradient estimates; positive solution; Bakry-Emery Ricci tensor; gradient estimates; positive solution; Bakry-Emery Ricci tensor},
language = {eng},
number = {1},
pages = {73-84},
publisher = {University of Ostrava},
title = {Gradient estimates for a nonlinear equation $\Delta _fu+cu^\{-\alpha \}=0$ on complete noncompact manifolds},
url = {http://eudml.org/doc/196367},
volume = {19},
year = {2011},
}
TY - JOUR
AU - Zhang, Jing
AU - Ma, Bingqing
TI - Gradient estimates for a nonlinear equation $\Delta _fu+cu^{-\alpha }=0$ on complete noncompact manifolds
JO - Communications in Mathematics
PY - 2011
PB - University of Ostrava
VL - 19
IS - 1
SP - 73
EP - 84
AB - Let $(M,g)$ be a complete noncompact Riemannian manifold. We consider gradient estimates on positive solutions to the following nonlinear equation $\Delta _fu+cu^{-\alpha }=0$ in $M$, where $\alpha $, $c$ are two real constants and $\alpha >0$, $f$ is a smooth real valued function on $M$ and $\Delta _f=\Delta -\nabla f\nabla $. When $N$ is finite and the $N$-Bakry-Emery Ricci tensor is bounded from below, we obtain a gradient estimate for positive solutions of the above equation. Moreover, under the assumption that $\infty $-Bakry-Emery Ricci tensor is bounded from below and $|\nabla f|$ is bounded from above, we also obtain a gradient estimate for positive solutions of the above equation. It extends the results of Yang [Yang, Y.Y. Gradient estimates for the equation $\Delta u+cu^{-\alpha }=0$ on Riemannian manifolds Acta. Math. Sin. 26(B) 2010 1177–1182].
LA - eng
KW - gradient estimates; positive solution; Bakry-Emery Ricci tensor; gradient estimates; positive solution; Bakry-Emery Ricci tensor
UR - http://eudml.org/doc/196367
ER -
References
top- Calabi, E., 10.1215/S0012-7094-58-02505-5, Duke Math. J. 25 1957 45–46 (1957) MR0092069DOI10.1215/S0012-7094-58-02505-5
- Chen, L., Chen, W.Y., 10.1007/s10455-008-9141-9, Ann. Glob. Anal. Geom. 35 2009 397–404 (2009) Zbl1177.35040MR2506242DOI10.1007/s10455-008-9141-9
- Chen, L., Chen, W.Y., Gradient estimates for positive smooth -harmonic functions, Acta Math. Sci. 30(B) 2010 1614–1618 (2010) Zbl1240.58019MR2778630
- Cheng, S.Y., Yau, S.T., 10.1002/cpa.3160280303, Commun. Pure. Appl. Math. 28 1975 333–354 (1975) Zbl0312.53031MR0385749DOI10.1002/cpa.3160280303
- Guo, Z.M., Wei, J.C., 10.1007/s00229-006-0001-2, Manuscripta Math. 120 2006 193–209 (2006) MR2234248DOI10.1007/s00229-006-0001-2
- Hsu, S.Y., Gradient estimates for a nonlinear parabolic equation under Ricci, arXiv: 0806.4004
- Huang, G.Y., Ma, B.Q., 10.1007/s00013-009-0091-7, Arch. Math. (Basel) 94 2010 265–275 (2010) Zbl1194.58020MR2602453DOI10.1007/s00013-009-0091-7
- Li, J.Y., 10.1016/0022-1236(91)90110-Q, J. Funct. Anal. 100 1991 233–256 (1991) Zbl0746.58078MR1125225DOI10.1016/0022-1236(91)90110-Q
- Li, X.D., Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds, J. Math. Pures Appl. 84 2005 1295–1361 (2005) Zbl1082.58036MR2170766
- Ma, L., 10.1016/j.jfa.2006.06.006, J. Funct. Anal. 241 2006 374–382 (2006) Zbl1112.58023MR2264255DOI10.1016/j.jfa.2006.06.006
- Ma, L., Liu, B.Y., Convexity of the first eigenfunction of the drifting Laplacian operator and its applications, New York J. Math. 14 2008 393–401 (2008) Zbl1156.35065MR2443979
- Ma, L., Liu, B.Y., 10.2140/pjm.2009.240.343, Pacific J. Math. 240 2009 343–361 (2009) Zbl1162.35059MR2485469DOI10.2140/pjm.2009.240.343
- Qian, Z.M., 10.1023/A:1008698923961, Potential Analysis 8 1998 137–142 (1998) Zbl0930.58012MR1618434DOI10.1023/A:1008698923961
- Wei, G.F., Wylie, W., Comparison geometry for the Bakry-Emery Ricci tensor, J. Differential Geometry 83 2009 377–405 (2009) Zbl1189.53036MR2577473
- Yang, Y.Y., 10.1090/S0002-9939-08-09398-2, Proc. Amer. Math. Soc. 136 2008 4095–4102 (2008) Zbl1151.58013MR2425752DOI10.1090/S0002-9939-08-09398-2
- Yang, Y.Y., 10.1007/s10114-010-7531-y, Acta. Math. Sin. 26(B) 2010 1177–1182 (2010) Zbl1203.58006MR2644055DOI10.1007/s10114-010-7531-y
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.