Some remarks on the Akivis algebras and the Pre-Lie algebras

Yuqun Chen; Yu Li

Czechoslovak Mathematical Journal (2011)

  • Volume: 61, Issue: 3, page 707-720
  • ISSN: 0011-4642

Abstract

top
In this paper, by using the Composition-Diamond lemma for non-associative algebras invented by A. I. Shirshov in 1962, we give Gröbner-Shirshov bases for free Pre-Lie algebras and the universal enveloping non-associative algebra of an Akivis algebra, respectively. As applications, we show I. P. Shestakov’s result that any Akivis algebra is linear and D. Segal’s result that the set of all good words in X * * forms a linear basis of the free Pre-Lie algebra PLie ( X ) generated by the set X . For completeness, we give the details of the proof of Shirshov’s Composition-Diamond lemma for non-associative algebras.

How to cite

top

Chen, Yuqun, and Li, Yu. "Some remarks on the Akivis algebras and the Pre-Lie algebras." Czechoslovak Mathematical Journal 61.3 (2011): 707-720. <http://eudml.org/doc/196373>.

@article{Chen2011,
abstract = {In this paper, by using the Composition-Diamond lemma for non-associative algebras invented by A. I. Shirshov in 1962, we give Gröbner-Shirshov bases for free Pre-Lie algebras and the universal enveloping non-associative algebra of an Akivis algebra, respectively. As applications, we show I. P. Shestakov’s result that any Akivis algebra is linear and D. Segal’s result that the set of all good words in $X^\{**\}$ forms a linear basis of the free Pre-Lie algebra $\{\rm PLie\}(X)$ generated by the set $X$. For completeness, we give the details of the proof of Shirshov’s Composition-Diamond lemma for non-associative algebras.},
author = {Chen, Yuqun, Li, Yu},
journal = {Czechoslovak Mathematical Journal},
keywords = {non-associative algebra; Akivis algebra; universal enveloping algebra; Pre-Lie algebra; Gröbner-Shirshov basis; nonassociative algebra; Akivis algebra; universal enveloping algebra; pre-Lie algebra; Gröbner-Shirshov basis},
language = {eng},
number = {3},
pages = {707-720},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some remarks on the Akivis algebras and the Pre-Lie algebras},
url = {http://eudml.org/doc/196373},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Chen, Yuqun
AU - Li, Yu
TI - Some remarks on the Akivis algebras and the Pre-Lie algebras
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 3
SP - 707
EP - 720
AB - In this paper, by using the Composition-Diamond lemma for non-associative algebras invented by A. I. Shirshov in 1962, we give Gröbner-Shirshov bases for free Pre-Lie algebras and the universal enveloping non-associative algebra of an Akivis algebra, respectively. As applications, we show I. P. Shestakov’s result that any Akivis algebra is linear and D. Segal’s result that the set of all good words in $X^{**}$ forms a linear basis of the free Pre-Lie algebra ${\rm PLie}(X)$ generated by the set $X$. For completeness, we give the details of the proof of Shirshov’s Composition-Diamond lemma for non-associative algebras.
LA - eng
KW - non-associative algebra; Akivis algebra; universal enveloping algebra; Pre-Lie algebra; Gröbner-Shirshov basis; nonassociative algebra; Akivis algebra; universal enveloping algebra; pre-Lie algebra; Gröbner-Shirshov basis
UR - http://eudml.org/doc/196373
ER -

References

top
  1. Akivis, M. A., The local algebras of a multidimensional three-web, Sibirsk. Mat. Z. 17 (1976), 5-11 Russian English translation: Siberian Math. J. 17 (1976), 3-8. (1976) MR0405261
  2. Bergman, G. M., 10.1016/0001-8708(78)90010-5, Adv. Math. 29 (1978), 178-218. (1978) MR0506890DOI10.1016/0001-8708(78)90010-5
  3. Bokut, L. A., 10.1007/BF01877233, Algebra Log. 15 (1976), 73-90. (1976) MR0506423DOI10.1007/BF01877233
  4. Bokut, L. A., Fong, Y., Ke, W.-F., Kolesnikov, P. S., Gröbner and Gröbner-Shirshov bases in algebra and conformal algebras, Fundam. Appl. Prikl. Mat. 6 (2000), 669-706. (2000) MR1801321
  5. Bokut, L. A., Kolesnikov, P. S., 10.1023/A:1023490323855, J. Math. Sci. 116 (2003), 2894-2916. (2003) MR1811792DOI10.1023/A:1023490323855
  6. Bokut, L. A., Kolesnikov, P. S., 10.1007/s10958-005-0454-y, J. Math. Sci. 131 (2005), 5962-6003. (2005) MR2153696DOI10.1007/s10958-005-0454-y
  7. Buchberger, B., An algorithmical criteria for the solvability of algebraic systems of equations, Aequationes Math. 4 (1970), 374-383 German. (1970) 
  8. Eisenbud, D., 10.1007/978-1-4612-5350-1, Springer Berlin (1995). (1995) MR1322960DOI10.1007/978-1-4612-5350-1
  9. Hironaka, H., 10.2307/1970486, Ann. Math. 79 (1964), 109-203, 205-326. (1964) MR0199184DOI10.2307/1970486
  10. Knuth, D. E., Bendix, P. B., Simple word problems in universal algebras, Comput. Probl. Abstract Algebra. Proc. Conf. Oxford 1967 (1970), 263-297. (1970) Zbl0188.04902MR0255472
  11. Kurosh, A. G., Nonassociative free algebras and free products of algebras, Mat. Sb. N. Ser. 20 (1947), 239-262 Russian. (1947) Zbl0041.16803MR0020986
  12. Reutenauer, C., Free Lie Algebras, Clarendon Press Oxford (1993). (1993) Zbl0798.17001MR1231799
  13. Segal, D., 10.1006/jabr.1994.1088, J. Algebra 164 (1994), 750-772. (1994) Zbl0831.17001MR1272113DOI10.1006/jabr.1994.1088
  14. Shestakov, I. P., 10.1023/A:1005157524168, Geom. Dedicata 77 (1999), 215-223. (1999) Zbl1043.17002MR1713296DOI10.1023/A:1005157524168
  15. Shestakov, I. P., Umirbaev, U., 10.1006/jabr.2001.9123, J. Algebra 250 (2002), 533-548. (2002) Zbl0993.17002MR1899864DOI10.1006/jabr.2001.9123
  16. Shirshov, A. I., Subalgebras of free Lie algebras, Mat. Sb., N. Ser. 33 (1953), 441-452 Russian. (1953) MR0059892
  17. Shirshov, A. I., Subalgebras of free commutative and free anti-commutative algebras, Mat. Sbornik 34 (1954), 81-88 Russian. (1954) MR0062112
  18. Shirshov, A. I., Certain algorithmic problems for ϵ -algebras, Sib. Mat. Zh. 3 (1962), 132-137. (1962) 
  19. Shirshov, A. I., Certain algorithmic problems for Lie algebras, Sib. Mat. Zh. 3 (1962), 292-296 Russian. (1962) 
  20. Bokut, L. A., Latyshev, V., Shestakov, I., Zelmanov, E., Selected Works of A. I. Shirshov Series. Contemporary Mathematicians, Basel, Boston, Berlin (2009). (2009) MR2547481
  21. Witt, E., Subrings of free Lie rings, Math. Z. 64 (1956), 195-216 German. (1956) 
  22. Zhukov, A. I., Reduced systems of defining relations in nonassociative algebras, Mat. Sb., N. Ser. 27 (1950), 267-280 Russian. (1950) Zbl0038.17001MR0037831

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.