Some remarks on the Akivis algebras and the Pre-Lie algebras
Czechoslovak Mathematical Journal (2011)
- Volume: 61, Issue: 3, page 707-720
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topChen, Yuqun, and Li, Yu. "Some remarks on the Akivis algebras and the Pre-Lie algebras." Czechoslovak Mathematical Journal 61.3 (2011): 707-720. <http://eudml.org/doc/196373>.
@article{Chen2011,
abstract = {In this paper, by using the Composition-Diamond lemma for non-associative algebras invented by A. I. Shirshov in 1962, we give Gröbner-Shirshov bases for free Pre-Lie algebras and the universal enveloping non-associative algebra of an Akivis algebra, respectively. As applications, we show I. P. Shestakov’s result that any Akivis algebra is linear and D. Segal’s result that the set of all good words in $X^\{**\}$ forms a linear basis of the free Pre-Lie algebra $\{\rm PLie\}(X)$ generated by the set $X$. For completeness, we give the details of the proof of Shirshov’s Composition-Diamond lemma for non-associative algebras.},
author = {Chen, Yuqun, Li, Yu},
journal = {Czechoslovak Mathematical Journal},
keywords = {non-associative algebra; Akivis algebra; universal enveloping algebra; Pre-Lie algebra; Gröbner-Shirshov basis; nonassociative algebra; Akivis algebra; universal enveloping algebra; pre-Lie algebra; Gröbner-Shirshov basis},
language = {eng},
number = {3},
pages = {707-720},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some remarks on the Akivis algebras and the Pre-Lie algebras},
url = {http://eudml.org/doc/196373},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Chen, Yuqun
AU - Li, Yu
TI - Some remarks on the Akivis algebras and the Pre-Lie algebras
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 3
SP - 707
EP - 720
AB - In this paper, by using the Composition-Diamond lemma for non-associative algebras invented by A. I. Shirshov in 1962, we give Gröbner-Shirshov bases for free Pre-Lie algebras and the universal enveloping non-associative algebra of an Akivis algebra, respectively. As applications, we show I. P. Shestakov’s result that any Akivis algebra is linear and D. Segal’s result that the set of all good words in $X^{**}$ forms a linear basis of the free Pre-Lie algebra ${\rm PLie}(X)$ generated by the set $X$. For completeness, we give the details of the proof of Shirshov’s Composition-Diamond lemma for non-associative algebras.
LA - eng
KW - non-associative algebra; Akivis algebra; universal enveloping algebra; Pre-Lie algebra; Gröbner-Shirshov basis; nonassociative algebra; Akivis algebra; universal enveloping algebra; pre-Lie algebra; Gröbner-Shirshov basis
UR - http://eudml.org/doc/196373
ER -
References
top- Akivis, M. A., The local algebras of a multidimensional three-web, Sibirsk. Mat. Z. 17 (1976), 5-11 Russian English translation: Siberian Math. J. 17 (1976), 3-8. (1976) MR0405261
- Bergman, G. M., 10.1016/0001-8708(78)90010-5, Adv. Math. 29 (1978), 178-218. (1978) MR0506890DOI10.1016/0001-8708(78)90010-5
- Bokut, L. A., 10.1007/BF01877233, Algebra Log. 15 (1976), 73-90. (1976) MR0506423DOI10.1007/BF01877233
- Bokut, L. A., Fong, Y., Ke, W.-F., Kolesnikov, P. S., Gröbner and Gröbner-Shirshov bases in algebra and conformal algebras, Fundam. Appl. Prikl. Mat. 6 (2000), 669-706. (2000) MR1801321
- Bokut, L. A., Kolesnikov, P. S., 10.1023/A:1023490323855, J. Math. Sci. 116 (2003), 2894-2916. (2003) MR1811792DOI10.1023/A:1023490323855
- Bokut, L. A., Kolesnikov, P. S., 10.1007/s10958-005-0454-y, J. Math. Sci. 131 (2005), 5962-6003. (2005) MR2153696DOI10.1007/s10958-005-0454-y
- Buchberger, B., An algorithmical criteria for the solvability of algebraic systems of equations, Aequationes Math. 4 (1970), 374-383 German. (1970)
- Eisenbud, D., 10.1007/978-1-4612-5350-1, Springer Berlin (1995). (1995) MR1322960DOI10.1007/978-1-4612-5350-1
- Hironaka, H., 10.2307/1970486, Ann. Math. 79 (1964), 109-203, 205-326. (1964) MR0199184DOI10.2307/1970486
- Knuth, D. E., Bendix, P. B., Simple word problems in universal algebras, Comput. Probl. Abstract Algebra. Proc. Conf. Oxford 1967 (1970), 263-297. (1970) Zbl0188.04902MR0255472
- Kurosh, A. G., Nonassociative free algebras and free products of algebras, Mat. Sb. N. Ser. 20 (1947), 239-262 Russian. (1947) Zbl0041.16803MR0020986
- Reutenauer, C., Free Lie Algebras, Clarendon Press Oxford (1993). (1993) Zbl0798.17001MR1231799
- Segal, D., 10.1006/jabr.1994.1088, J. Algebra 164 (1994), 750-772. (1994) Zbl0831.17001MR1272113DOI10.1006/jabr.1994.1088
- Shestakov, I. P., 10.1023/A:1005157524168, Geom. Dedicata 77 (1999), 215-223. (1999) Zbl1043.17002MR1713296DOI10.1023/A:1005157524168
- Shestakov, I. P., Umirbaev, U., 10.1006/jabr.2001.9123, J. Algebra 250 (2002), 533-548. (2002) Zbl0993.17002MR1899864DOI10.1006/jabr.2001.9123
- Shirshov, A. I., Subalgebras of free Lie algebras, Mat. Sb., N. Ser. 33 (1953), 441-452 Russian. (1953) MR0059892
- Shirshov, A. I., Subalgebras of free commutative and free anti-commutative algebras, Mat. Sbornik 34 (1954), 81-88 Russian. (1954) MR0062112
- Shirshov, A. I., Certain algorithmic problems for -algebras, Sib. Mat. Zh. 3 (1962), 132-137. (1962)
- Shirshov, A. I., Certain algorithmic problems for Lie algebras, Sib. Mat. Zh. 3 (1962), 292-296 Russian. (1962)
- Bokut, L. A., Latyshev, V., Shestakov, I., Zelmanov, E., Selected Works of A. I. Shirshov Series. Contemporary Mathematicians, Basel, Boston, Berlin (2009). (2009) MR2547481
- Witt, E., Subrings of free Lie rings, Math. Z. 64 (1956), 195-216 German. (1956)
- Zhukov, A. I., Reduced systems of defining relations in nonassociative algebras, Mat. Sb., N. Ser. 27 (1950), 267-280 Russian. (1950) Zbl0038.17001MR0037831
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.