Spectrum of the weighted Laplace operator in unbounded domains
Mathematica Bohemica (2011)
- Volume: 136, Issue: 4, page 415-427
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topFilinovskiy, Alexey. "Spectrum of the weighted Laplace operator in unbounded domains." Mathematica Bohemica 136.4 (2011): 415-427. <http://eudml.org/doc/196401>.
@article{Filinovskiy2011,
abstract = {We investigate the spectral properties of the differential operator $-r^s \Delta $, $s\ge 0$ with the Dirichlet boundary condition in unbounded domains whose boundaries satisfy some geometrical condition. Considering this operator as a self-adjoint operator in the space with the norm $\Vert u\Vert ^2_\{L_\{2, s\} (\Omega )\}= \int _\{\Omega \} r^\{-s\} |u|^2 \{\rm d\} x $, we study the structure of the spectrum with respect to the parameter $s$. Further we give an estimate of the rate of condensation of discrete spectra when it changes to continuous.},
author = {Filinovskiy, Alexey},
journal = {Mathematica Bohemica},
keywords = {Laplace operator; multiplicative perturbation; Dirichlet problem; Friedrichs extension; purely discrete spectra; purely continuous spectra; weighted Laplace operator; Friedrichs extension; purely discrete spectra; purely continuous spectra},
language = {eng},
number = {4},
pages = {415-427},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Spectrum of the weighted Laplace operator in unbounded domains},
url = {http://eudml.org/doc/196401},
volume = {136},
year = {2011},
}
TY - JOUR
AU - Filinovskiy, Alexey
TI - Spectrum of the weighted Laplace operator in unbounded domains
JO - Mathematica Bohemica
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 136
IS - 4
SP - 415
EP - 427
AB - We investigate the spectral properties of the differential operator $-r^s \Delta $, $s\ge 0$ with the Dirichlet boundary condition in unbounded domains whose boundaries satisfy some geometrical condition. Considering this operator as a self-adjoint operator in the space with the norm $\Vert u\Vert ^2_{L_{2, s} (\Omega )}= \int _{\Omega } r^{-s} |u|^2 {\rm d} x $, we study the structure of the spectrum with respect to the parameter $s$. Further we give an estimate of the rate of condensation of discrete spectra when it changes to continuous.
LA - eng
KW - Laplace operator; multiplicative perturbation; Dirichlet problem; Friedrichs extension; purely discrete spectra; purely continuous spectra; weighted Laplace operator; Friedrichs extension; purely discrete spectra; purely continuous spectra
UR - http://eudml.org/doc/196401
ER -
References
top- T., Lewis R., 10.1090/S0002-9947-1982-0654855-X, Trans. Am. Math. Soc. 271 (1982), 653-666. (1982) Zbl0507.35069MR0654855DOI10.1090/S0002-9947-1982-0654855-X
- M., Eidus D., 10.1016/0022-1236(91)90117-N, J. Funct. Anal. 100 (1991), 400-410. (1991) Zbl0762.35020MR1125232DOI10.1016/0022-1236(91)90117-N
- A., Ladyzhenskaya O., N., Uraltseva N., Linear and Quasilinear Equations of Elliptic Type, Second edition, revised. Nauka, Moskva (1973), 576 Russian. (1973) MR0509265
- M., Glazman I., Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators, Oldbourne Press, London (1965), 234. (1965) Zbl0143.36505MR0190800
- A., Berezin F., A., Shubin M., The Schrodinger Equation, Moskov. Gos. Univ., Moskva (1983), 392 Russian. (1983) MR0739327
- M., Abramowitz, I.A., Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover Publications (1964), 1058. (1964) Zbl0171.38503MR1225604
- M., Landis E., On some properties of solutions of elliptic equations, Dokl. Akad. Nauk SSSR 107 (1956), 640-643 Russian. (1956) Zbl0075.28201MR0078557
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.