Multiobjective De Novo Linear Programming
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2011)
- Volume: 50, Issue: 2, page 29-36
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topFiala, Petr. "Multiobjective De Novo Linear Programming." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 50.2 (2011): 29-36. <http://eudml.org/doc/196443>.
@article{Fiala2011,
abstract = {Mathematical programming under multiple objectives has emerged as a powerful tool to assist in the process of searching for decisions which best satisfy a multitude of conflicting objectives. In multiobjective linear programming problems it is usually impossible to optimize all objectives in a given system. Trade-offs are properties of inadequately designed system a thus can be eliminated through designing better one. Multiobjective De Novo linear programming is problem for designing optimal system by reshaping the feasible set. The paper presents approaches for solving the MODNLP problem, extensions of the problem, examples, and applications.},
author = {Fiala, Petr},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {De Novo programming; multiple objectives; linear programming; trade-offs; De Novo programming; multiple objectives; linear programming; trade-offs},
language = {eng},
number = {2},
pages = {29-36},
publisher = {Palacký University Olomouc},
title = {Multiobjective De Novo Linear Programming},
url = {http://eudml.org/doc/196443},
volume = {50},
year = {2011},
}
TY - JOUR
AU - Fiala, Petr
TI - Multiobjective De Novo Linear Programming
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2011
PB - Palacký University Olomouc
VL - 50
IS - 2
SP - 29
EP - 36
AB - Mathematical programming under multiple objectives has emerged as a powerful tool to assist in the process of searching for decisions which best satisfy a multitude of conflicting objectives. In multiobjective linear programming problems it is usually impossible to optimize all objectives in a given system. Trade-offs are properties of inadequately designed system a thus can be eliminated through designing better one. Multiobjective De Novo linear programming is problem for designing optimal system by reshaping the feasible set. The paper presents approaches for solving the MODNLP problem, extensions of the problem, examples, and applications.
LA - eng
KW - De Novo programming; multiple objectives; linear programming; trade-offs; De Novo programming; multiple objectives; linear programming; trade-offs
UR - http://eudml.org/doc/196443
ER -
References
top- Babic, Z., Pavic, I., 10.1016/0925-5273(95)00177-8, International Journal of Production Economics 43 (1996), 59–66. (1996) DOI10.1016/0925-5273(95)00177-8
- Fiala, P., Modely a metody rozhodování, Economia, Praha, 2008. (2008)
- Li, R. J., Lee, E. S., Fuzzy Approaches to Multicriteria De Novo Programs, Journal of Mathematical Analysis and Applications 153 (1990), 13–20. (1990) Zbl0719.90092MR1080121
- Shi, Y., 10.1016/0898-1221(94)00247-I, Computers and Mathematics with Applications 29 (1995), 43–50. (1995) MR1320848DOI10.1016/0898-1221(94)00247-I
- Zelený, M., De Novo Programming, Ekonomicko-matematický obzor 26 (1990), 406–413. (1990) MR1090438
- Zeleny, M., Multiobjective Optimization, Systems Design and De Novo Programming, In: Zopounidis, C., Pardalos, P. M. (eds.): Handbook of Multicriteria Analysis, Springer, Berlin, 2010. (2010)
- Zeleny, M., 10.1080/03081079008935113, International Journal of General System 17 (1990), 295–307. (1990) DOI10.1080/03081079008935113
- Zhang, Y. M., Huang, G. H., Zhang, X. D., 10.1016/j.ejor.2008.11.019, European Journal of Operational Research 199 (2009), 531–541. (2009) Zbl1176.90333MR2533293DOI10.1016/j.ejor.2008.11.019
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.