Compact embeddings of Besov spaces involving only slowly varying smoothness

António Caetano; Amiran Gogatishvili; Bohumír Opic

Czechoslovak Mathematical Journal (2011)

  • Volume: 61, Issue: 4, page 923-940
  • ISSN: 0011-4642

Abstract

top
We characterize compact embeddings of Besov spaces B p , r 0 , b ( n ) involving the zero classical smoothness and a slowly varying smoothness b into Lorentz-Karamata spaces L p , q ; b ¯ ( Ω ) , where Ω is a bounded domain in n and b ¯ is another slowly varying function.

How to cite

top

Caetano, António, Gogatishvili, Amiran, and Opic, Bohumír. "Compact embeddings of Besov spaces involving only slowly varying smoothness." Czechoslovak Mathematical Journal 61.4 (2011): 923-940. <http://eudml.org/doc/196449>.

@article{Caetano2011,
abstract = {We characterize compact embeddings of Besov spaces $B^\{0,b\}_\{p,r\}(\mathbb \{R\}^n)$ involving the zero classical smoothness and a slowly varying smoothness $b$ into Lorentz-Karamata spaces $L_\{p, q; \bar\{b\}\}(\Omega )$, where $\Omega $ is a bounded domain in $\mathbb \{R\}^n$ and $\bar\{b\}$ is another slowly varying function.},
author = {Caetano, António, Gogatishvili, Amiran, Opic, Bohumír},
journal = {Czechoslovak Mathematical Journal},
keywords = {Besov spaces with generalized smoothness; Lorentz-Karamata spaces; compact embeddings; Besov spaces with generalized smoothness; Lorentz-Karamata space; compact embedding},
language = {eng},
number = {4},
pages = {923-940},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Compact embeddings of Besov spaces involving only slowly varying smoothness},
url = {http://eudml.org/doc/196449},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Caetano, António
AU - Gogatishvili, Amiran
AU - Opic, Bohumír
TI - Compact embeddings of Besov spaces involving only slowly varying smoothness
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 4
SP - 923
EP - 940
AB - We characterize compact embeddings of Besov spaces $B^{0,b}_{p,r}(\mathbb {R}^n)$ involving the zero classical smoothness and a slowly varying smoothness $b$ into Lorentz-Karamata spaces $L_{p, q; \bar{b}}(\Omega )$, where $\Omega $ is a bounded domain in $\mathbb {R}^n$ and $\bar{b}$ is another slowly varying function.
LA - eng
KW - Besov spaces with generalized smoothness; Lorentz-Karamata spaces; compact embeddings; Besov spaces with generalized smoothness; Lorentz-Karamata space; compact embedding
UR - http://eudml.org/doc/196449
ER -

References

top
  1. Bennett, C., Sharpley, R., Interpolation of Operators, Academic Press, Boston (1988). (1988) Zbl0647.46057MR0928802
  2. Caetano, A. M., Farkas, W., Local growth envelopes of Besov spaces of generalized smoothness, Z. Anal. Anwendungen 25 (2006), 265-298. (2006) Zbl1119.46032MR2251954
  3. Caetano, A. M., Gogatishvili, A., Opic, B., 10.1016/j.jat.2007.12.003, J. Approx. Theory 152 (2008), 188-214. (2008) Zbl1161.46017MR2422148DOI10.1016/j.jat.2007.12.003
  4. Caetano, A. M., Gogatishvili, A., Opic, B., 10.1016/j.jat.2011.03.005, J. Approx. Theory 163 (2011), 1373-1399. (2011) MR2832731DOI10.1016/j.jat.2011.03.005
  5. Caetano, A. M., Haroske, D. D., 10.1155/2005/165785, J. Function Spaces Appl. 3 (2005), 33-71. (2005) Zbl1079.46019MR2110047DOI10.1155/2005/165785
  6. Caetano, A. M., Moura, S. D., 10.1002/mana.200310195, Math. Nachr. 273 (2004), 43-57. (2004) MR2084956DOI10.1002/mana.200310195
  7. Caetano, A. M., Moura, S. D., Local growth envelopes of spaces of generalized smoothness: the critical case, Math. Ineq. & Appl. 7 (2004), 573-606. (2004) Zbl1076.46025MR2097514
  8. Carro, M. J., Raposo, J. A., Soria, J., Recent developments in the theory of Lorentz spaces and weighted inequalities, Mem. Amer. Math. Soc. 187 (2007). (2007) Zbl1126.42005MR2308059
  9. Carro, M. J., Soria, J., 10.1006/jfan.1993.1042, J. Funct. Anal. 112 (1993), 480-494. (1993) Zbl0784.46022MR1213148DOI10.1006/jfan.1993.1042
  10. Dunford, N., Schwartz, J. T., Linear Operators, part I, Interscience, New York (1957). (1957) 
  11. Edmunds, D. E., Evans, W. D., Hardy Operators, Functions Spaces and Embeddings, Springer, Berlin, Heidelberg (2004). (2004) MR2091115
  12. Edmunds, D. E., Gurka, P., Opic, B., 10.4064/sm168-3-4, Studia Math. 168 (2005), 229-250. (2005) Zbl1083.46017MR2146125DOI10.4064/sm168-3-4
  13. Edmunds, D. E., Kerman, R., Pick, L., 10.1006/jfan.1999.3508, J. Funct. Anal. 170 (2000), 307-355. (2000) Zbl0955.46019MR1740655DOI10.1006/jfan.1999.3508
  14. Farkas, W., Leopold, H.-G., 10.1007/s10231-004-0110-z, Ann. Mat. Pura Appl. 185 (2006), 1-62. (2006) Zbl1116.46024MR2179581DOI10.1007/s10231-004-0110-z
  15. Gol'dman, M. L., Embeddings of Nikol'skij-Besov spaces into weighted Lorent spaces, Trudy Mat. Inst. Steklova 180 (1987), 93-95 Russian. (1987) 
  16. Gol'dman, M. L., Rearrangement invariant envelopes of generalized Besov, Sobolev, and Calderon spaces, Burenkov, V. I. (ed.) et al., The interaction of analysis and geometry. International school-conference on analysis and geometry, Novosibirsk, Russia, August 23-September 3, 2004. Providence, RI: American Mathematical Society (AMS). Contemporary Mathematics 424 (2007), 53-81. (2007) MR2316331
  17. Gol'dman, M. L., Kerman, R., On optimal embedding of Calderón spaces and generalized Besov spaces, Tr. Mat. Inst. Steklova 243 (2003), 161-193 Russian English translation: Proc. Steklov Inst. Math. 243 (2003), 154-184. (2003) Zbl1090.46022MR2049469
  18. Gurka, P., Opic, B., Sharp embeddings of Besov spaces with logarithmic smoothness, Rev. Mat. Complutense 18 (2005), 81-110. (2005) Zbl1083.46018MR2135533
  19. Gurka, P., Opic, B., 10.1016/j.cam.2006.10.036, J. Comput. Appl. Math. 208 (2007), 235-269. (2007) Zbl1132.46022MR2347748DOI10.1016/j.cam.2006.10.036
  20. Haroske, D. D., Moura, S. D., 10.1016/j.jat.2004.04.008, J. Approximation Theory 128 (2004), 151-174. (2004) MR2068695DOI10.1016/j.jat.2004.04.008
  21. Kalyabin, G. A., Lizorkin, P. I., 10.1002/mana.19871330102, Math. Nachr. 133 (1987), 7-32. (1987) Zbl0636.46033MR0912417DOI10.1002/mana.19871330102
  22. Netrusov, Yu., 10.1007/BF01305216, J. Soviet. Math. 47 (1989), 2871-2881 Translated from Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklova (LOMI) 159 (1987), 69-82. (1987) MR0885077DOI10.1007/BF01305216
  23. Triebel, H., Theory of Function Spaces II, Birkhäuser, Basel (1992). (1992) Zbl0763.46025MR1163193
  24. Triebel, H., Theory of Function Spaces III, Birkhäuser, Basel (2006). (2006) Zbl1104.46001MR2250142

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.