Multiple positive solutions to multipoint one-dimensional p -Laplacian boundary value problem with impulsive effects

Yuansheng Tian; Anping Chen; Weigao Ge

Czechoslovak Mathematical Journal (2011)

  • Volume: 61, Issue: 1, page 127-144
  • ISSN: 0011-4642

Abstract

top
In this paper, using a fixed point theorem on a convex cone, we consider the existence of positive solutions to the multipoint one-dimensional p -Laplacian boundary value problem with impulsive effects, and obtain multiplicity results for positive solutions.

How to cite

top

Tian, Yuansheng, Chen, Anping, and Ge, Weigao. "Multiple positive solutions to multipoint one-dimensional $p$-Laplacian boundary value problem with impulsive effects." Czechoslovak Mathematical Journal 61.1 (2011): 127-144. <http://eudml.org/doc/196489>.

@article{Tian2011,
abstract = {In this paper, using a fixed point theorem on a convex cone, we consider the existence of positive solutions to the multipoint one-dimensional $p$-Laplacian boundary value problem with impulsive effects, and obtain multiplicity results for positive solutions.},
author = {Tian, Yuansheng, Chen, Anping, Ge, Weigao},
journal = {Czechoslovak Mathematical Journal},
keywords = {$p$-Laplacian operator; boundary value problem; impulsive differential equations; fixed-point theorem; positive solutions; -Laplacian operator; boundary value problem; impulsive differential equation; fixed-point theorem; positive solution},
language = {eng},
number = {1},
pages = {127-144},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Multiple positive solutions to multipoint one-dimensional $p$-Laplacian boundary value problem with impulsive effects},
url = {http://eudml.org/doc/196489},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Tian, Yuansheng
AU - Chen, Anping
AU - Ge, Weigao
TI - Multiple positive solutions to multipoint one-dimensional $p$-Laplacian boundary value problem with impulsive effects
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 1
SP - 127
EP - 144
AB - In this paper, using a fixed point theorem on a convex cone, we consider the existence of positive solutions to the multipoint one-dimensional $p$-Laplacian boundary value problem with impulsive effects, and obtain multiplicity results for positive solutions.
LA - eng
KW - $p$-Laplacian operator; boundary value problem; impulsive differential equations; fixed-point theorem; positive solutions; -Laplacian operator; boundary value problem; impulsive differential equation; fixed-point theorem; positive solution
UR - http://eudml.org/doc/196489
ER -

References

top
  1. Bai, Z., Ge, W., 10.1016/j.camwa.2004.03.002, Comput. Math. Appl. 48 (2004), 699-707. (2004) Zbl1066.34019MR2105244DOI10.1016/j.camwa.2004.03.002
  2. Chen, L., Sun, J., 10.1016/j.jmaa.2005.08.012, J. Math. Anal. Appl. 318 (2006), 726-741. (2006) Zbl1102.34052MR2215181DOI10.1016/j.jmaa.2005.08.012
  3. Ding, W., Han, M., 10.1016/S0096-3003(03)00811-7, Appl. Math. Comput. 155 (2004), 709-726. (2004) Zbl1102.34324MR2078208DOI10.1016/S0096-3003(03)00811-7
  4. Kaufmann, E. R., Kosmatov, N., Raffoul, Y. N., A second-order boundary value problem with impulsive effects on an unbounded domain, Nonlinear Anal., Theory Methods Appl. 69 (2008), 2924-2929. (2008) Zbl1159.34023MR2452102
  5. Lin, X., Jiang, D., 10.1016/j.jmaa.2005.07.076, J. Math. Anal. Appl. 321 (2006), 501-514. (2006) Zbl1103.34015MR2241134DOI10.1016/j.jmaa.2005.07.076
  6. Lee, Y.-H., Liu, X., 10.1016/j.jmaa.2006.07.106, J. Math. Anal. Appl. 331 (2007), 159-176. (2007) Zbl1120.34018MR2305995DOI10.1016/j.jmaa.2006.07.106
  7. Lee, E. K., Lee, Y.-H., 10.1016/j.amc.2003.10.013, Appl. Math. Comput. 158 (2004), 745-759. (2004) MR2095700DOI10.1016/j.amc.2003.10.013
  8. Rachůnková, I., Tomeček, J., 10.1016/j.na.2005.09.016, Nonlinear Anal., Theory Methods Appl. 65 (2006), 210-229. (2006) MR2226265DOI10.1016/j.na.2005.09.016
  9. Rachůnková, I., Tvrdý, M., 10.1016/j.na.2004.09.017, Nonlinear Anal., Theory Methods Appl. 63 (2005), 257-266. (2005) DOI10.1016/j.na.2004.09.017
  10. Su, H., Wei, Z., Wang, B., The existence of positive solutions for a nonlinear four-point singular boundary value problem with a p -Laplacian operator, Nonlinear Anal., Theory Methods Appl. 66 (2007), 2204-2217. (2007) Zbl1126.34017MR2311023
  11. Shen, J., Wang, W., 10.1016/j.na.2007.10.036, Nonlinear Anal., Theory Methods Appl. 69 (2008), 4055-4062. (2008) Zbl1171.34309MR2463353DOI10.1016/j.na.2007.10.036
  12. Tian, Y., Jiang, D., Ge, W., 10.1016/j.amc.2007.10.052, Appl. Math. Comput. 200 (2008), 123-132. (2008) Zbl1156.34019MR2421630DOI10.1016/j.amc.2007.10.052
  13. Wang, Y., Hou, C., 10.1016/j.jmaa.2005.09.085, J. Math. Anal. Appl. 315 (2006), 144-153. (2006) Zbl1098.34017MR2196536DOI10.1016/j.jmaa.2005.09.085
  14. Zhang, X., Ge, W., 10.1016/j.na.2008.02.052, Nonlinear Anal., Theory Methods Appl. 70 (2009), 1692-1701. (2009) Zbl1183.34038MR2483590DOI10.1016/j.na.2008.02.052

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.