Multiple positive solutions to multipoint one-dimensional -Laplacian boundary value problem with impulsive effects
Yuansheng Tian; Anping Chen; Weigao Ge
Czechoslovak Mathematical Journal (2011)
- Volume: 61, Issue: 1, page 127-144
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topTian, Yuansheng, Chen, Anping, and Ge, Weigao. "Multiple positive solutions to multipoint one-dimensional $p$-Laplacian boundary value problem with impulsive effects." Czechoslovak Mathematical Journal 61.1 (2011): 127-144. <http://eudml.org/doc/196489>.
@article{Tian2011,
abstract = {In this paper, using a fixed point theorem on a convex cone, we consider the existence of positive solutions to the multipoint one-dimensional $p$-Laplacian boundary value problem with impulsive effects, and obtain multiplicity results for positive solutions.},
author = {Tian, Yuansheng, Chen, Anping, Ge, Weigao},
journal = {Czechoslovak Mathematical Journal},
keywords = {$p$-Laplacian operator; boundary value problem; impulsive differential equations; fixed-point theorem; positive solutions; -Laplacian operator; boundary value problem; impulsive differential equation; fixed-point theorem; positive solution},
language = {eng},
number = {1},
pages = {127-144},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Multiple positive solutions to multipoint one-dimensional $p$-Laplacian boundary value problem with impulsive effects},
url = {http://eudml.org/doc/196489},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Tian, Yuansheng
AU - Chen, Anping
AU - Ge, Weigao
TI - Multiple positive solutions to multipoint one-dimensional $p$-Laplacian boundary value problem with impulsive effects
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 1
SP - 127
EP - 144
AB - In this paper, using a fixed point theorem on a convex cone, we consider the existence of positive solutions to the multipoint one-dimensional $p$-Laplacian boundary value problem with impulsive effects, and obtain multiplicity results for positive solutions.
LA - eng
KW - $p$-Laplacian operator; boundary value problem; impulsive differential equations; fixed-point theorem; positive solutions; -Laplacian operator; boundary value problem; impulsive differential equation; fixed-point theorem; positive solution
UR - http://eudml.org/doc/196489
ER -
References
top- Bai, Z., Ge, W., 10.1016/j.camwa.2004.03.002, Comput. Math. Appl. 48 (2004), 699-707. (2004) Zbl1066.34019MR2105244DOI10.1016/j.camwa.2004.03.002
- Chen, L., Sun, J., 10.1016/j.jmaa.2005.08.012, J. Math. Anal. Appl. 318 (2006), 726-741. (2006) Zbl1102.34052MR2215181DOI10.1016/j.jmaa.2005.08.012
- Ding, W., Han, M., 10.1016/S0096-3003(03)00811-7, Appl. Math. Comput. 155 (2004), 709-726. (2004) Zbl1102.34324MR2078208DOI10.1016/S0096-3003(03)00811-7
- Kaufmann, E. R., Kosmatov, N., Raffoul, Y. N., A second-order boundary value problem with impulsive effects on an unbounded domain, Nonlinear Anal., Theory Methods Appl. 69 (2008), 2924-2929. (2008) Zbl1159.34023MR2452102
- Lin, X., Jiang, D., 10.1016/j.jmaa.2005.07.076, J. Math. Anal. Appl. 321 (2006), 501-514. (2006) Zbl1103.34015MR2241134DOI10.1016/j.jmaa.2005.07.076
- Lee, Y.-H., Liu, X., 10.1016/j.jmaa.2006.07.106, J. Math. Anal. Appl. 331 (2007), 159-176. (2007) Zbl1120.34018MR2305995DOI10.1016/j.jmaa.2006.07.106
- Lee, E. K., Lee, Y.-H., 10.1016/j.amc.2003.10.013, Appl. Math. Comput. 158 (2004), 745-759. (2004) MR2095700DOI10.1016/j.amc.2003.10.013
- Rachůnková, I., Tomeček, J., 10.1016/j.na.2005.09.016, Nonlinear Anal., Theory Methods Appl. 65 (2006), 210-229. (2006) MR2226265DOI10.1016/j.na.2005.09.016
- Rachůnková, I., Tvrdý, M., 10.1016/j.na.2004.09.017, Nonlinear Anal., Theory Methods Appl. 63 (2005), 257-266. (2005) DOI10.1016/j.na.2004.09.017
- Su, H., Wei, Z., Wang, B., The existence of positive solutions for a nonlinear four-point singular boundary value problem with a -Laplacian operator, Nonlinear Anal., Theory Methods Appl. 66 (2007), 2204-2217. (2007) Zbl1126.34017MR2311023
- Shen, J., Wang, W., 10.1016/j.na.2007.10.036, Nonlinear Anal., Theory Methods Appl. 69 (2008), 4055-4062. (2008) Zbl1171.34309MR2463353DOI10.1016/j.na.2007.10.036
- Tian, Y., Jiang, D., Ge, W., 10.1016/j.amc.2007.10.052, Appl. Math. Comput. 200 (2008), 123-132. (2008) Zbl1156.34019MR2421630DOI10.1016/j.amc.2007.10.052
- Wang, Y., Hou, C., 10.1016/j.jmaa.2005.09.085, J. Math. Anal. Appl. 315 (2006), 144-153. (2006) Zbl1098.34017MR2196536DOI10.1016/j.jmaa.2005.09.085
- Zhang, X., Ge, W., 10.1016/j.na.2008.02.052, Nonlinear Anal., Theory Methods Appl. 70 (2009), 1692-1701. (2009) Zbl1183.34038MR2483590DOI10.1016/j.na.2008.02.052
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.