Spatial prediction of the mark of a location-dependent marked point process: How the use of a parametric model may improve prediction

Tomáš Mrkvička; François Goreaud; Joël Chadoeuf

Kybernetika (2011)

  • Volume: 47, Issue: 5, page 696-714
  • ISSN: 0023-5954

Abstract

top
We discuss the prediction of a spatial variable of a multivariate mark composed of both dependent and explanatory variables. The marks are location-dependent and they are attached to a point process. We assume that the marks are assigned independently, conditionally on an unknown underlying parametric field. We compare (i) the classical non-parametric Nadaraya-Watson kernel estimator based on the dependent variable (ii) estimators obtained under an assumption of local parametric model where explanatory variables of the local model are estimated through kernel estimation and (iii) a kernel estimator of the result of the parametric model, supposed here to be a Uniformly Minimum Variance Unbiased Estimator derived under the local parametric model when complete and sufficient statistics are available. The comparison is done asymptotically and by simulations in special cases. The procedure for better estimator selection is then illustrated on a real-life data set.

How to cite

top

Mrkvička, Tomáš, Goreaud, François, and Chadoeuf, Joël. "Spatial prediction of the mark of a location-dependent marked point process: How the use of a parametric model may improve prediction." Kybernetika 47.5 (2011): 696-714. <http://eudml.org/doc/196529>.

@article{Mrkvička2011,
abstract = {We discuss the prediction of a spatial variable of a multivariate mark composed of both dependent and explanatory variables. The marks are location-dependent and they are attached to a point process. We assume that the marks are assigned independently, conditionally on an unknown underlying parametric field. We compare (i) the classical non-parametric Nadaraya-Watson kernel estimator based on the dependent variable (ii) estimators obtained under an assumption of local parametric model where explanatory variables of the local model are estimated through kernel estimation and (iii) a kernel estimator of the result of the parametric model, supposed here to be a Uniformly Minimum Variance Unbiased Estimator derived under the local parametric model when complete and sufficient statistics are available. The comparison is done asymptotically and by simulations in special cases. The procedure for better estimator selection is then illustrated on a real-life data set.},
author = {Mrkvička, Tomáš, Goreaud, François, Chadoeuf, Joël},
journal = {Kybernetika},
keywords = {kernel estimation; marked Poisson process; mean mark estimation; location-dependent mark distribution; segment process; kernel estimation; marked Poisson process; mean mark estimation; location-dependent mark distribution; segment process},
language = {eng},
number = {5},
pages = {696-714},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Spatial prediction of the mark of a location-dependent marked point process: How the use of a parametric model may improve prediction},
url = {http://eudml.org/doc/196529},
volume = {47},
year = {2011},
}

TY - JOUR
AU - Mrkvička, Tomáš
AU - Goreaud, François
AU - Chadoeuf, Joël
TI - Spatial prediction of the mark of a location-dependent marked point process: How the use of a parametric model may improve prediction
JO - Kybernetika
PY - 2011
PB - Institute of Information Theory and Automation AS CR
VL - 47
IS - 5
SP - 696
EP - 714
AB - We discuss the prediction of a spatial variable of a multivariate mark composed of both dependent and explanatory variables. The marks are location-dependent and they are attached to a point process. We assume that the marks are assigned independently, conditionally on an unknown underlying parametric field. We compare (i) the classical non-parametric Nadaraya-Watson kernel estimator based on the dependent variable (ii) estimators obtained under an assumption of local parametric model where explanatory variables of the local model are estimated through kernel estimation and (iii) a kernel estimator of the result of the parametric model, supposed here to be a Uniformly Minimum Variance Unbiased Estimator derived under the local parametric model when complete and sufficient statistics are available. The comparison is done asymptotically and by simulations in special cases. The procedure for better estimator selection is then illustrated on a real-life data set.
LA - eng
KW - kernel estimation; marked Poisson process; mean mark estimation; location-dependent mark distribution; segment process; kernel estimation; marked Poisson process; mean mark estimation; location-dependent mark distribution; segment process
UR - http://eudml.org/doc/196529
ER -

References

top
  1. Bouchon, J., Faille, Lemée, G., Robin, A. M., Schmitt, A., Cartes et notice des sols, du peuplement forestier et des groupements végétaux de la réserve biologique de la Tillaie en forêt de Fontainebleau., University of Orsay 1973. 
  2. Coudun, C., Gegout, J. C., 10.1111/j.1654-1103.2007.tb02566.x, J. Vegetation Sci. 18 (2007), 4, 517-524. DOI10.1111/j.1654-1103.2007.tb02566.x
  3. Finney, D. J., On the distribution of a variable whose logarithm is normally distributed., J. Roy. Statist. Soc. Ser. B 7 (1941), 155-161. MR0006649
  4. Flénet, F., Villon, P., Ruget, F., Methodology of adaptation of the STICS model to a new crop: spring linseed (Linum usitatissimum, L.), Agronomie 24 (2004), 6-7, 367-381. MR2108558
  5. Green, W. H., Econometric Analysis., Prentice Hall, New Jersey 2003. 
  6. Guinier, Ph., Foresterie et protection de la nature. L'exemple de Fontainebleau., Rev. Forestière Française II (1950), 703-717. 
  7. Härdle, W., Applied Non-parametric Regression., Cambridge University Press, Cambridge 1990. 
  8. Illian, J., Penttinen, A., Stoyan, H., Stoyan, D., Statistical Analysis and Modelling of Spatial Point Patterns., Wiley, New York 2008. Zbl1197.62135MR2384630
  9. Kelsall, J., Diggle, P. J., 10.2307/3318678, Bernoulli 1 (1995), 3-16. Zbl0830.62039MR1354453DOI10.2307/3318678
  10. Kelsall, J., Diggle, P. J., 10.1002/sim.4780142106, Statist. Medicine 14 (1995), 2335-2342. DOI10.1002/sim.4780142106
  11. Lawson, A. B., Statistical Methods in Spatial Epidemiology., Wiley, Chichester 2001. Zbl1096.62118MR1852711
  12. Lehmann, E. L., Theory of Point Estimation., Wadsworth & Brooks, California 1991. Zbl0916.62017MR1143059
  13. Mrkvička, T., 10.1239/aap/1011994028, Adv. Appl. Prob. (SGSA) 33 (2001), 765-772. MR1875778DOI10.1239/aap/1011994028
  14. Mrkvička, T., Estimation variances for parameterized marked point processes and for parameterized Poisson segment processes., Comment. Math. Univ. Carolin. 45,1 (2004), 109-117. MR2076863
  15. Mrkvička, T., Estimation of intersection intensity in Poisson processes of segments., Comment. Math. Univ. Carolin. 48 (2007), 93-106. MR2338832
  16. Mrkvička, T., Soubeyrand, S., Chadoeuf, J., Goodness-of-fit Test of the Mark Distribution in a Point Process with Non-stationary Marks., Research Report 36, Biostatistics and Spatial Processes Research Unit. INRA, Avignon 2009. 
  17. Noblet-Ducoudré, N. de, Gervois, S., Ciais, P., Viovy, N., Brisson, N., Seguin, B., Perrier, A., Coupling the soil-vegetation-atmosphere-transfer scheme ORCHIDEE to the agronomy model STICS to study the influence of croplands on the european carbon and water budgets., Agronomie 24 (2004), 6-7, 397-407. 
  18. Penttinen, A., Stoyan, D., Hentonnen, H., Marked point processes in forests statistics., Forest Sci. 38 (1992), 4, 806-824. 
  19. Pontailler, J. Y., Faille, A., Lemee, G., Storms drive successiinal dynamics in natural forests: a case study in Fontainebleau forest (France)., Forest Ecology and Management 98 (1997), 1-15. 
  20. Silverman, B. W., Density Estimation for Statistics and Data Analysis., Chapman and Hall, London 1986. Zbl0617.62042MR0848134
  21. Stoyan, D., Kendall, W. S., Mecke, J., Stochastic Geometry and Its Applications. Second edition., John Wiley and Sons, New York 1995. MR0895588
  22. Bodegom, P. Van, Verburg, P. H., Stein, A., Adiningsih, S., Gon, H. A. C. Denier Van Der, 10.1023/A:1013755405957, Environ. Ecol. Statist. 9 (2002), 5-26. MR1881785DOI10.1023/A:1013755405957

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.