General integration and extensions.II
Czechoslovak Mathematical Journal (2010)
- Volume: 60, Issue: 4, page 983-1005
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topSchwabik, Štefan. "General integration and extensions.II." Czechoslovak Mathematical Journal 60.4 (2010): 983-1005. <http://eudml.org/doc/196544>.
@article{Schwabik2010,
abstract = {This work is a continuation of the paper (Š. Schwabik: General integration and extensions I, Czechoslovak Math. J. 60 (2010), 961–981). Two new general extensions are introduced and studied in the class $\mathfrak \{T\}$ of general integrals. The new extensions lead to approximate description of the Kurzweil-Henstock integral based on the Lebesgue integral close to the results of S. Nakanishi presented in the paper (S. Nakanishi: A new definition of the Denjoy’s special integral by the method of successive approximation, Math. Jap. 41 (1995), 217–230).},
author = {Schwabik, Štefan},
journal = {Czechoslovak Mathematical Journal},
keywords = {abstract integration; extension of integral; Kurzweil-Henstock integration; abstract integration; extension of integral; Kurzweil-Henstock integration},
language = {eng},
number = {4},
pages = {983-1005},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {General integration and extensions.II},
url = {http://eudml.org/doc/196544},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Schwabik, Štefan
TI - General integration and extensions.II
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 4
SP - 983
EP - 1005
AB - This work is a continuation of the paper (Š. Schwabik: General integration and extensions I, Czechoslovak Math. J. 60 (2010), 961–981). Two new general extensions are introduced and studied in the class $\mathfrak {T}$ of general integrals. The new extensions lead to approximate description of the Kurzweil-Henstock integral based on the Lebesgue integral close to the results of S. Nakanishi presented in the paper (S. Nakanishi: A new definition of the Denjoy’s special integral by the method of successive approximation, Math. Jap. 41 (1995), 217–230).
LA - eng
KW - abstract integration; extension of integral; Kurzweil-Henstock integration; abstract integration; extension of integral; Kurzweil-Henstock integration
UR - http://eudml.org/doc/196544
ER -
References
top- Bongiorno, B., Piazza, L. Di, Skvortsov, V., 10.2307/44152676, Real Anal. Exch. 21 (1995), 656-663. (1995) Zbl0879.26026MR1407278DOI10.2307/44152676
- Foran, J., Fundamentals of Real Analysis, Marcel Dekker New York (1991). (1991) Zbl0744.26004MR1201817
- Gordon, R. A., The Integrals of Lebesgue, Denjoy, Perron and Henstock, American Mathematical Society Providence (1994). (1994) Zbl0807.26004MR1288751
- Kubota, Y., 10.5036/mjiu.29.41, Math. J. Ibaraki Univ. 29 (1997), 41-54. (1997) Zbl0924.26005MR1601363DOI10.5036/mjiu.29.41
- Kurzweil, J., Nichtabsolut konvergente Integrale, BSB B. G. Teubner Verlagsgesellschaft Leipzig (1980). (1980) Zbl0441.28001MR0597703
- Lee, P.-Y., Lanzhou Lectures on Henstock Integration, World Scientific Singapore (1989). (1989) Zbl0699.26004MR1050957
- Lee, P.-Y., Výborný, R., The Integral; An Easy Approach after Kurzweil and Henstock, Cambridge Univ. Press Cambridge (2000). (2000) MR1756319
- Nakanishi, S., A new definition of the Denjoy's special integral by the method of successive approximation, Math. Jap. 41 (1995), 217-230. (1995) Zbl0932.26007MR1317766
- Saks, S., Theory of the Integral, Hafner New York (1937). (1937) Zbl0017.30004
- Schwabik, Š., 10.2478/s12175-009-0160-1, Math. Slovaca 59 (2009), 731-752. (2009) MR2564330DOI10.2478/s12175-009-0160-1
- Schwabik, Š., 10.1007/s10587-010-0087-2, Czech. Math. J. 60 (2010), 961-981. (2010) MR2738960DOI10.1007/s10587-010-0087-2
- Thomson, B. S., Derivates of Interval Functions, Mem. Am. Math. Soc. 452 (1991). (1991) Zbl0734.26003MR1078198
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.