Linear liftings of skew symmetric tensor fields of type to Weil bundles
Czechoslovak Mathematical Journal (2010)
- Volume: 60, Issue: 4, page 933-943
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topDębecki, Jacek. "Linear liftings of skew symmetric tensor fields of type $(1,2)$ to Weil bundles." Czechoslovak Mathematical Journal 60.4 (2010): 933-943. <http://eudml.org/doc/196567>.
@article{Dębecki2010,
abstract = {The paper contains a classification of linear liftings of skew symmetric tensor fields of type $(1,2)$ on $n$-dimensional manifolds to tensor fields of type $(1,2)$ on Weil bundles under the condition that $n\ge 3.$ It complements author’s paper “Linear liftings of symmetric tensor fields of type $(1,2)$ to Weil bundles” (Ann. Polon. Math. 92, 2007, pp. 13–27), where similar liftings of symmetric tensor fields were studied. We apply this result to generalize that of author’s paper “Affine liftings of torsion-free connections to Weil bundles” (Colloq. Math. 114, 2009, pp. 1–8) and get a classification of affine liftings of all linear connections to Weil bundles.},
author = {Dębecki, Jacek},
journal = {Czechoslovak Mathematical Journal},
keywords = {natural operator; Weil bundle; natural operator; Weil bundle},
language = {eng},
number = {4},
pages = {933-943},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Linear liftings of skew symmetric tensor fields of type $(1,2)$ to Weil bundles},
url = {http://eudml.org/doc/196567},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Dębecki, Jacek
TI - Linear liftings of skew symmetric tensor fields of type $(1,2)$ to Weil bundles
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 4
SP - 933
EP - 943
AB - The paper contains a classification of linear liftings of skew symmetric tensor fields of type $(1,2)$ on $n$-dimensional manifolds to tensor fields of type $(1,2)$ on Weil bundles under the condition that $n\ge 3.$ It complements author’s paper “Linear liftings of symmetric tensor fields of type $(1,2)$ to Weil bundles” (Ann. Polon. Math. 92, 2007, pp. 13–27), where similar liftings of symmetric tensor fields were studied. We apply this result to generalize that of author’s paper “Affine liftings of torsion-free connections to Weil bundles” (Colloq. Math. 114, 2009, pp. 1–8) and get a classification of affine liftings of all linear connections to Weil bundles.
LA - eng
KW - natural operator; Weil bundle; natural operator; Weil bundle
UR - http://eudml.org/doc/196567
ER -
References
top- Dębecki, J., 10.1007/s10587-005-0067-0, Czech. Math. J. 55 (130) (2005), 809-816. (2005) MR2153104DOI10.1007/s10587-005-0067-0
- Dębecki, J., 10.1007/s00605-005-0348-6, Monatsh. Math. 148 (2006), 101-117. (2006) MR2235358DOI10.1007/s00605-005-0348-6
- Dębecki, J., 10.4064/ap92-1-2, Ann. Polon. Math. 92 (2007), 13-27. (2007) MR2318507DOI10.4064/ap92-1-2
- Dębecki, J., 10.4064/cm114-1-1, Colloq. Math. 114 (2009), 1-8. (2009) MR2457274DOI10.4064/cm114-1-1
- Doupovec, M., Mikulski, W. M., 10.1007/s10587-006-0096-3, Czech. Math. J. 56 (131) (2006), 1323-1334. (2006) Zbl1164.58300MR2280811DOI10.1007/s10587-006-0096-3
- Eck, D. J., 10.1016/0022-4049(86)90076-9, J. Pure Appl. Algebra 42 (1986), 133-140. (1986) Zbl0615.57019MR0857563DOI10.1016/0022-4049(86)90076-9
- Gancarzewicz, J., Mikulski, W., Pogoda, Z., 10.1017/S0027763000004931, Nagoya Math. J. 135 (1994), 1-41. (1994) Zbl0813.53010MR1295815DOI10.1017/S0027763000004931
- Kainz, G., Michor, P., Natural transformations in differential geometry, Czech. Math. J. 37 (112) (1987), 584-607. (1987) Zbl0654.58001MR0913992
- Kolář, I., 10.1007/BF00133034, Ann. Global Anal. Geom. 6 (1988), 109-117. (1988) MR0982760DOI10.1007/BF00133034
- Kolář, I., Michor, P. W., Slovák, J., Natural Operations in Differential Geometry, Springer-Verlag Berlin (1993). (1993) MR1202431
- Kurek, J., Mikulski, W. M., Canonical symplectic structures on the th order tangent bundle of a symplectic manifold, Extr. Math. 21 (2006), 159-166. (2006) Zbl1141.58002MR2292745
- Luciano, O., 10.1017/S0027763000002774, Nagoya Math. J. 109 (1988), 69-89. (1988) Zbl0661.58007MR0931952DOI10.1017/S0027763000002774
- Mikulski, W. M., 10.1017/S0027763000005444, Nagoya Math. J. 140 (1995), 117-137. (1995) Zbl0854.53018MR1369482DOI10.1017/S0027763000005444
- Morimoto, A., 10.4310/jdg/1214433720, J. Diff. Geom. 11 (1976), 479-498. (1976) MR0445422DOI10.4310/jdg/1214433720
- Weil, A., Théorie des points proches sur les variétés différentielles, Colloques Internat. Centre Nat. Rech. Sci. 52 (1953), 111-117 French. (1953) MR0061455
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.