Transferral of entailment in duality theory II: strong dualisability
Maria João Gouveia; Miroslav Haviar
Czechoslovak Mathematical Journal (2011)
- Volume: 61, Issue: 2, page 401-417
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGouveia, Maria João, and Haviar, Miroslav. "Transferral of entailment in duality theory II: strong dualisability." Czechoslovak Mathematical Journal 61.2 (2011): 401-417. <http://eudml.org/doc/196585>.
@article{Gouveia2011,
abstract = {Results saying how to transfer the entailment in certain minimal and maximal ways and how to transfer strong dualisability between two different finite generators of a quasi-variety of algebras are presented. A new proof for a well-known result in the theory of natural dualities which says that strong dualisability of a quasi-variety is independent of the generating algebra is derived.},
author = {Gouveia, Maria João, Haviar, Miroslav},
journal = {Czechoslovak Mathematical Journal},
keywords = {natural duality; (strong) dualisability; entailment; natural duality; strong dualisability; entailment},
language = {eng},
number = {2},
pages = {401-417},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Transferral of entailment in duality theory II: strong dualisability},
url = {http://eudml.org/doc/196585},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Gouveia, Maria João
AU - Haviar, Miroslav
TI - Transferral of entailment in duality theory II: strong dualisability
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 2
SP - 401
EP - 417
AB - Results saying how to transfer the entailment in certain minimal and maximal ways and how to transfer strong dualisability between two different finite generators of a quasi-variety of algebras are presented. A new proof for a well-known result in the theory of natural dualities which says that strong dualisability of a quasi-variety is independent of the generating algebra is derived.
LA - eng
KW - natural duality; (strong) dualisability; entailment; natural duality; strong dualisability; entailment
UR - http://eudml.org/doc/196585
ER -
References
top- Clark, D. M., Davey, B. A., Natural Dualities for the Working Algebraist, Cambridge University Press, Cambridge (1998). (1998) Zbl0910.08001MR1663208
- Clark, D. M., Idziak, P. M., Sabourin, L. R., Szabó, Cs., Willard, R., 10.1007/PL00000344, Algebra Universalis 46 (2001), 285-320. (2001) MR1835800DOI10.1007/PL00000344
- Davey, B. A., Haviar, M., A schizophrenic operation which aids the efficient transfer of strong dualitites, Houston Math. J. 26 (2000), 215-222. (2000) MR1814235
- Davey, B. A., Haviar, M., Priestley, H. A., 10.2307/2275875, J. Symbolic Logic 60 (1995), 1087-1114. (1995) Zbl0845.08006MR1367197DOI10.2307/2275875
- Davey, B. A., Haviar, M., Willard, R., 10.1007/s00012-005-1944-y, Algebra Universalis 54 (2005), 397-416. (2005) Zbl1090.08009MR2218853DOI10.1007/s00012-005-1944-y
- Davey, B. A., Willard, R., 10.1007/s000120050204, Algebra Universalis 45 (2001), 103-106. (2001) Zbl1039.08006MR1809859DOI10.1007/s000120050204
- Gouveia, M. J., Haviar, M., 10.1007/s10587-011-0016-z, Czech. Math. J. 61 (2011), 41-63. (2011) MR2782758DOI10.1007/s10587-011-0016-z
- Hyndman, J. J., 10.1007/s00012-004-1847-3, Algebra Universalis 51 (2004), 29-34. (2004) Zbl1092.08004MR2067149DOI10.1007/s00012-004-1847-3
- Pitkethly, J. G., Davey, B. A., Dualisability: Unary Algebras and Beyond, Springer (2005). (2005) Zbl1085.08001MR2161626
- Saramago, M., 10.1007/s000120050153, Algebra Universalis 43 (2000), 197-212. (2000) Zbl1011.08003MR1773938DOI10.1007/s000120050153
- Saramago, M. J., Priestley, H. A., 10.1142/S0218196702000791, Internat. J. Algebra Comput. 12 (2002), 407-436. (2002) Zbl1027.08006MR1910686DOI10.1142/S0218196702000791
- Willard, R., New tools for proving dualizability. Dualities, Interpretability and Ordered Structures (Lisbon, 1997), J. Vaz de Carvalho and I. Ferreirim Centro de Álgebra da Universidade de Lisboa (1999), 69-74. (1999)
- Zádori, L., 10.1017/S0004972700014301, Bull. Austral. Math. Soc. 51 (1995), 469-478. (1995) MR1331440DOI10.1017/S0004972700014301
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.