On a form of hidden symmetry of chaotic states of atmospheric processes

Jiří Horák

Pokroky matematiky, fyziky a astronomie (2003)

  • Volume: 48, Issue: 4, page 315-325
  • ISSN: 0032-2423

How to cite

top

Horák, Jiří. "O jedné formě skryté symetrie chaotických stavů atmosférických procesů." Pokroky matematiky, fyziky a astronomie 48.4 (2003): 315-325. <http://eudml.org/doc/196633>.

@article{Horák2003,
author = {Horák, Jiří},
journal = {Pokroky matematiky, fyziky a astronomie},
language = {cze},
number = {4},
pages = {315-325},
publisher = {Jednota českých matematiků a fyziků Union of Czech Mathematicians and Physicists},
title = {O jedné formě skryté symetrie chaotických stavů atmosférických procesů},
url = {http://eudml.org/doc/196633},
volume = {48},
year = {2003},
}

TY - JOUR
AU - Horák, Jiří
TI - O jedné formě skryté symetrie chaotických stavů atmosférických procesů
JO - Pokroky matematiky, fyziky a astronomie
PY - 2003
PB - Jednota českých matematiků a fyziků Union of Czech Mathematicians and Physicists
VL - 48
IS - 4
SP - 315
EP - 325
LA - cze
UR - http://eudml.org/doc/196633
ER -

References

top
  1. Dymnikov, V. P., Filatov, A. N., Mathematics of Climate Modeling, Birkhäuser, Boston, Basel, Berlin 1997, 264 s. (1997) Zbl0873.76002MR1426827
  2. Horák, J., Equation of barotropic fluid on a rotating spherical surface and its inertial manifold, Studia geophys. et geodetica 44 (2000), 26–37. (2000) 
  3. Foias, J., Sant, J. C., On the smoothness of the nonlinear spectral manifolds associated to the NavierS̄tokes equations, Indiana Univ. Math. J. 33 (1984), 911–926. (1984) MR0763949
  4. Dettman, C. P., Morris, G. P., Proof of Lyapunov exponent pairing for systems at constant kinetic energy, Phys. Rev. E 53 (1996), 5541–5544. (1996) 
  5. Dymnikov, V. P., Gricun, A. S., Parnaja simetrija globalnych pokazatělej Ljapunova na attraktorach modelej dinamiki atmosfery, Izv. AN. Fizika atmosfery i okeana 37 (2001), 291–296. (2001) MR1851892
  6. Horák, J., Krlín, L., Deterministický chaos a matematické modely turbulence, Academia, Praha 1996, 444 s. (1996) 
  7. Horák, J., Systems of the Fluid Mechanical Type: Applications and Connections, Academia, Praha 1990, 116 s. (1990) Zbl0830.76002MR1061121
  8. Oseledec, V. I., Multiplikativnaja ergodičeskaja teorema. Charakterističeskie pokazatěli Ljapunova dinamičeskich sistem, Trudy Moskevskogo matematičeskogo obščestva 19 (1969), 179–210. (1969) MR0240280
  9. Horák, J., Klima, objekt matematického zkoumání. Část 1. Matematický model klimatu, Pokroky mat. fyz. astronom. 4 (2001), 313–327. (2001) 
  10. Arnoľd, V. I., Matematičeskie metody klassičeskoj mechaniky, Nauka, Moskva 1974, 431 s. (1974) MR0474390
  11. Ruelle, D., Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics, Report IHRES, Burges sur Yvette 1999, 66 s. (1999) Zbl0934.37010MR1705592
  12. Eckmann, J. P, Ruelle, D., Ergodic theory of chaos and strange attractors, Rev. Modern. Physics 57 (1985), Pt. I. (1985) Zbl0989.37516MR0800052

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.