Finite-time boundedness and stabilization of switched linear systems

Haibo Du; Xiangze Lin; Shihua Li

Kybernetika (2010)

  • Volume: 46, Issue: 5, page 870-889
  • ISSN: 0023-5954

Abstract

top
In this paper, finite-time boundedness and stabilization problems for a class of switched linear systems with time-varying exogenous disturbances are studied. Firstly, the concepts of finite-time stability and finite-time boundedness are extended to switched linear systems. Then, based on matrix inequalities, some sufficient conditions under which the switched linear systems are finite-time bounded and uniformly finite-time bounded are given. Moreover, to solve the finite-time stabilization problem, stabilizing controllers and a class of switching signals are designed. The main results are proven by using the multiple Lyapunov-like functions method, the single Lyapunov-like function method and the common Lyapunov-like function method, respectively. Finally, three examples are employed to verify the efficiency of the proposed methods.

How to cite

top

Du, Haibo, Lin, Xiangze, and Li, Shihua. "Finite-time boundedness and stabilization of switched linear systems." Kybernetika 46.5 (2010): 870-889. <http://eudml.org/doc/196649>.

@article{Du2010,
abstract = {In this paper, finite-time boundedness and stabilization problems for a class of switched linear systems with time-varying exogenous disturbances are studied. Firstly, the concepts of finite-time stability and finite-time boundedness are extended to switched linear systems. Then, based on matrix inequalities, some sufficient conditions under which the switched linear systems are finite-time bounded and uniformly finite-time bounded are given. Moreover, to solve the finite-time stabilization problem, stabilizing controllers and a class of switching signals are designed. The main results are proven by using the multiple Lyapunov-like functions method, the single Lyapunov-like function method and the common Lyapunov-like function method, respectively. Finally, three examples are employed to verify the efficiency of the proposed methods.},
author = {Du, Haibo, Lin, Xiangze, Li, Shihua},
journal = {Kybernetika},
keywords = {switched linear systems; finite-time boundedness; multiple Lyapunov-like functions; single Lyapunov-like function; common Lyapunov-like function; switched linear systems; finite-time boundedness; multiple Lyapunov-like functions; single Lyapunov-like function; common Lyapunov-like function},
language = {eng},
number = {5},
pages = {870-889},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Finite-time boundedness and stabilization of switched linear systems},
url = {http://eudml.org/doc/196649},
volume = {46},
year = {2010},
}

TY - JOUR
AU - Du, Haibo
AU - Lin, Xiangze
AU - Li, Shihua
TI - Finite-time boundedness and stabilization of switched linear systems
JO - Kybernetika
PY - 2010
PB - Institute of Information Theory and Automation AS CR
VL - 46
IS - 5
SP - 870
EP - 889
AB - In this paper, finite-time boundedness and stabilization problems for a class of switched linear systems with time-varying exogenous disturbances are studied. Firstly, the concepts of finite-time stability and finite-time boundedness are extended to switched linear systems. Then, based on matrix inequalities, some sufficient conditions under which the switched linear systems are finite-time bounded and uniformly finite-time bounded are given. Moreover, to solve the finite-time stabilization problem, stabilizing controllers and a class of switching signals are designed. The main results are proven by using the multiple Lyapunov-like functions method, the single Lyapunov-like function method and the common Lyapunov-like function method, respectively. Finally, three examples are employed to verify the efficiency of the proposed methods.
LA - eng
KW - switched linear systems; finite-time boundedness; multiple Lyapunov-like functions; single Lyapunov-like function; common Lyapunov-like function; switched linear systems; finite-time boundedness; multiple Lyapunov-like functions; single Lyapunov-like function; common Lyapunov-like function
UR - http://eudml.org/doc/196649
ER -

References

top
  1. Amato, F., Ambrosino, R., Ariola, M., Cosentino, C., 10.1016/j.automatica.2008.12.016, Automatica 45 (2009), 1354–1358. (2009) Zbl1162.93375MR2531617DOI10.1016/j.automatica.2008.12.016
  2. Amato, F., Ariola, M., 10.1109/TAC.2005.847042, IEEE Trans. Automat. Control 50 (2005), 724–729. (2005) MR2141582DOI10.1109/TAC.2005.847042
  3. Amato, F., Ariola, M., Dorato, P., 10.1016/S0005-1098(01)00087-5, Automatica 37 (2001), 1459–1463. (2001) Zbl0983.93060DOI10.1016/S0005-1098(01)00087-5
  4. Amato, F., Merola, A., Cosentino, C., 10.1109/TAC.2010.2041680, IEEE Trans. Automat. Control 55 (2010), 1003–1008. (2010) MR2654445DOI10.1109/TAC.2010.2041680
  5. Amato, F., Merola, A., Cosentino, C., 10.1016/j.automatica.2010.02.008, Automatica 46 (2010) 919–924. (2010) MR2877166DOI10.1016/j.automatica.2010.02.008
  6. Bhat, S. P., Bernstein, D. S., 10.1137/S0363012997321358, SIAM J. Control Optim. 38 (2000), 751–766. (2000) Zbl0945.34039MR1756893DOI10.1137/S0363012997321358
  7. Branicky, M. S., 10.1109/9.664150, IEEE Trans. Automat. Control 43 (1998), 475–482. (1998) Zbl0904.93036MR1617575DOI10.1109/9.664150
  8. Cheng, D., Guo, Y., Advances on switched systems, Control Theory Appl. 22 (2005), 954–960. (2005) Zbl1112.93365
  9. Dorato, P., Short time stability in linear time-varying systems, In: Proc. IRE Internat. Conv. Rec. Part 4, New York 1961, pp. 83–87. (1961) 
  10. Engell, S., Kowalewski, S., Schulz, C., Strusberg, O., Continuous-discrete interactions in chemical processing plants, Proc. IEEE 88 (2000), 1050–1068. (2000) 
  11. Gayek, J. E., A survey of techniques for approximating reachable and controllable sets, In: Proc. 30th IEEE Conference on Decision and Control, Brighton 1991, pp.  1724–1729. (1991) 
  12. Hespanha, J. P., Liberzon, D., Morse, A. S., Stability of switched systems with average dwell time, In: Proc. 38th Conference on Decision and Control, Phoenix 1999, pp. 2655–2660. (1999) 
  13. Kamenkov, G., On stability of motion over a finite interval of time, J. Applied Math. and Mechanics 17 (1953), 529–540. (1953) MR0061237
  14. Liberzon, D., Switching in Systems and Control, Brikhauser, Boston 2003. (2003) Zbl1036.93001MR1987806
  15. Lin, H., Antsaklis, P. J., 10.1080/00207170701654354, Internat. J. Control 81 (2008), 1114–1124. (2008) Zbl1152.93472MR2431162DOI10.1080/00207170701654354
  16. Lin, H., Antsaklis, P. J., 10.1109/TAC.2008.2012009, IEEE Trans. Automat. Control 54 (2009), 308–322. (2009) MR2491959DOI10.1109/TAC.2008.2012009
  17. Li, S., Tian, Y., 10.1080/00207170601148291, Internat. J. Control 80 (2007), 646-657. (2007) Zbl1117.93004MR2304124DOI10.1080/00207170601148291
  18. Morse, A. S., 10.1109/37.793443, IEEE Control Systems Magazine 19 (1999), 59–70. (1999) DOI10.1109/37.793443
  19. Orlov, Y., 10.1137/S0363012903425593, SIAM J. Control Optim. 43 (2005), 1253–1271. (2005) Zbl1085.93021MR2124272DOI10.1137/S0363012903425593
  20. Pepyne, D., Cassandaras, C., Optimal control of hybrid systems in manufacturing, Proc. IEEE 88 (2000), 1108–1123. (2000) 
  21. Pettersson, S., Synthesis of switched linear systems, In: Proc. 42nd Conference on Decision and Control, Maui 2003, pp. 5283–5288. (2003) 
  22. Sun, Z., 10.1016/j.automatica.2009.03.001, Automatica 45 (2009), 1708–1714. (2009) Zbl1184.93077MR2879485DOI10.1016/j.automatica.2009.03.001
  23. Sun, Z., Ge, S. S., 10.1016/j.automatica.2004.09.015, Automatica 41 (2005), 181–195. (2005) Zbl1074.93025MR2157653DOI10.1016/j.automatica.2004.09.015
  24. Sun, X., Zhao, J., Hill, D. J., 10.1016/j.automatica.2006.05.007, Automatica 42 (2006), 1769–1774. (2006) Zbl1114.93086MR2249722DOI10.1016/j.automatica.2006.05.007
  25. Tanner, H. G., Jadbabaie, A., Pappas, G. J., 10.1109/TAC.2007.895948, IEEE Trans. Automat. Control 52 (2007), 863–868. (2007) MR2324246DOI10.1109/TAC.2007.895948
  26. Safonov, M. G., Goh, K. G., Ly, J., Control system synthesis via bilinear matrix inequalities, In: Proc. American Control Conference, Baltimore 1994, pp. 45–49. (1994) 
  27. Antwerp, J. G. Van, Braat, R. D., 10.1016/S0959-1524(99)00056-6, J. Process Control 10 (2000), 363–385. (2000) DOI10.1016/S0959-1524(99)00056-6
  28. Varaiya, P., 10.1109/9.250509, IEEE Trans. Automat. Control 38 (1993), 195–207. (1993) MR1206801DOI10.1109/9.250509
  29. Wang, J., Zhang, G., Li, H., Adaptive control of uncertain nonholonomic systems in finite time, Kybernetika 45 (2009), 809–824. (2009) Zbl1190.93086MR2599114
  30. Weiss, L., Infante, E. F., 10.1109/TAC.1967.1098483, IEEE Trans. Automat. Control 12 (1967), 54–59. (1967) Zbl0168.33903MR0209589DOI10.1109/TAC.1967.1098483
  31. Xu, X., Zhai, G., 10.1109/TAC.2005.858680, IEEE Trans. Automat. Control 50 (2005), 1897–1903. (2005) MR2182748DOI10.1109/TAC.2005.858680
  32. Yang, H., Cocquempot, V., Jiang, B., 10.1016/j.sysconle.2009.06.007, Systems Control Lett. 58 (2009), 703–708. (2009) Zbl1181.93074MR2584005DOI10.1016/j.sysconle.2009.06.007
  33. Zhao, J., Hill, D. J., 10.1016/j.automatica.2007.10.011, Automatica 44 (2008), 1220–1232. (2008) MR2531787DOI10.1016/j.automatica.2007.10.011
  34. Zhao, S., Sun, J., Liu, L., 10.1080/00207170801898893, Internat. J. Control 81 (2008), 1824–1829. (2008) Zbl1148.93345MR2462577DOI10.1080/00207170801898893
  35. Zhu, L., Shen, Y., Li, C., 10.1016/j.cnsns.2007.09.013, Communications in Nonlinear Science and Numerical Simulation 14 (2009), 361–370. (2009) Zbl1221.93240MR2458814DOI10.1016/j.cnsns.2007.09.013

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.