Some estimates for the minimal eigenvalue of the Sturm-Liouville problem with third-type boundary conditions
Mathematica Bohemica (2011)
- Volume: 136, Issue: 4, page 377-384
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topKarulina, Elena. "Some estimates for the minimal eigenvalue of the Sturm-Liouville problem with third-type boundary conditions." Mathematica Bohemica 136.4 (2011): 377-384. <http://eudml.org/doc/196702>.
@article{Karulina2011,
abstract = {We consider the Sturm-Liouville problem with symmetric boundary conditions and an integral condition. We estimate the first eigenvalue $\lambda _1$ of this problem for different values of the parameters.},
author = {Karulina, Elena},
journal = {Mathematica Bohemica},
keywords = {Sturm-Liouville problem; minimal eigenvalue; Sturm-Liouville problem; minimal eigenvalue},
language = {eng},
number = {4},
pages = {377-384},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some estimates for the minimal eigenvalue of the Sturm-Liouville problem with third-type boundary conditions},
url = {http://eudml.org/doc/196702},
volume = {136},
year = {2011},
}
TY - JOUR
AU - Karulina, Elena
TI - Some estimates for the minimal eigenvalue of the Sturm-Liouville problem with third-type boundary conditions
JO - Mathematica Bohemica
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 136
IS - 4
SP - 377
EP - 384
AB - We consider the Sturm-Liouville problem with symmetric boundary conditions and an integral condition. We estimate the first eigenvalue $\lambda _1$ of this problem for different values of the parameters.
LA - eng
KW - Sturm-Liouville problem; minimal eigenvalue; Sturm-Liouville problem; minimal eigenvalue
UR - http://eudml.org/doc/196702
ER -
References
top- Egorov, Yu., Kondratiev, V., On Spectral Theory of Elliptic Operators, Birkhäuser, Basel (1996). (1996) Zbl0855.35001MR1409364
- Muryshkina, O. V., On estimates for the first eigenvalue of the Sturm-Liouville problem with symmetric boundary conditions, Vestnik Molodyh Uchenyh. -- 3'2005. Series: Applied Mathematics and Mechanics. -- 1'2005 36-52.
- Vinokurov, V. A., Sadovnichii, V. A., On the range of variation of an eigenvalue when the potential is varied, Dokl. Math. 68 247-252 (2003), Translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 392 592-597 (2003). (2003) Zbl1143.34325MR2082849
- Ezhak, S. S., 10.1007/s10958-007-0345-5, English J. Math. Sci., New York 145 5205-5218 (2007), Translation from Sovrem. Mat. Prilozh. 36 56-69 (2005). (2005) MR2463726DOI10.1007/s10958-007-0345-5
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.