Solvability of a class of elastic beam equations with strong Carathéodory nonlinearity
Applications of Mathematics (2011)
- Volume: 56, Issue: 6, page 543-555
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topYao, Qingliu. "Solvability of a class of elastic beam equations with strong Carathéodory nonlinearity." Applications of Mathematics 56.6 (2011): 543-555. <http://eudml.org/doc/196729>.
@article{Yao2011,
abstract = {We study the existence of a solution to the nonlinear fourth-order elastic beam equation with nonhomogeneous boundary conditions \[ \{\left\lbrace \begin\{array\}\{ll\} u^\{(4)\}(t)=f\bigl (t,u(t),u^\{\prime \}(t),u^\{\prime \prime \}(t),u^\{\prime \prime \prime \}(t)\bigr ),\quad \text\{a.e.\} \ t\in [0,1],\\ u(0)=a, \ u^\{\prime \}(0)=b, \ u(1)=c, \ u^\{\prime \prime \}(1)=d, \end\{array\}\right.\} \]
where the nonlinear term $f(t,u_\{0\},u_\{1\},u_\{2\},u_\{3\})$ is a strong Carathéodory function. By constructing suitable height functions of the nonlinear term $f(t,u_\{0\},u_\{1\},u_\{2\},u_\{3\})$ on bounded sets and applying the Leray-Schauder fixed point theorem, we prove that the equation has a solution provided that the integration of some height function has an appropriate value.},
author = {Yao, Qingliu},
journal = {Applications of Mathematics},
keywords = {nonlinear ordinary differential equation; boundary value problem; existence; fixed point theorem; nonlinear ordinary differential equation; boundary value problem; existence; fixed point theorem},
language = {eng},
number = {6},
pages = {543-555},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Solvability of a class of elastic beam equations with strong Carathéodory nonlinearity},
url = {http://eudml.org/doc/196729},
volume = {56},
year = {2011},
}
TY - JOUR
AU - Yao, Qingliu
TI - Solvability of a class of elastic beam equations with strong Carathéodory nonlinearity
JO - Applications of Mathematics
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 6
SP - 543
EP - 555
AB - We study the existence of a solution to the nonlinear fourth-order elastic beam equation with nonhomogeneous boundary conditions \[ {\left\lbrace \begin{array}{ll} u^{(4)}(t)=f\bigl (t,u(t),u^{\prime }(t),u^{\prime \prime }(t),u^{\prime \prime \prime }(t)\bigr ),\quad \text{a.e.} \ t\in [0,1],\\ u(0)=a, \ u^{\prime }(0)=b, \ u(1)=c, \ u^{\prime \prime }(1)=d, \end{array}\right.} \]
where the nonlinear term $f(t,u_{0},u_{1},u_{2},u_{3})$ is a strong Carathéodory function. By constructing suitable height functions of the nonlinear term $f(t,u_{0},u_{1},u_{2},u_{3})$ on bounded sets and applying the Leray-Schauder fixed point theorem, we prove that the equation has a solution provided that the integration of some height function has an appropriate value.
LA - eng
KW - nonlinear ordinary differential equation; boundary value problem; existence; fixed point theorem; nonlinear ordinary differential equation; boundary value problem; existence; fixed point theorem
UR - http://eudml.org/doc/196729
ER -
References
top- Agarwal, R. P., On fourth order boundary value problems arising in beam analysis, Differ. Integral Equ. 2 (1989), 91-110. (1989) Zbl0715.34032MR0960017
- Agarwal, R. P., O'Regan, D., Lakshmikantham, V., 10.1016/S0362-546X(98)00341-1, Nonlinear Anal., Theory Methods Appl. 42 (2000), 215-228. (2000) MR1773979DOI10.1016/S0362-546X(98)00341-1
- Clarke, F. H., Optimization and Nonsmooth Analysis, John Wiley & Sons New York (1983). (1983) Zbl0582.49001MR0709590
- Elgindi, M. B. M., Guan, Z., 10.1155/S0161171297000343, Int. J. Math. Math. Sci. 20 (1997), 257-262. (1997) Zbl0913.34020MR1444725DOI10.1155/S0161171297000343
- Gupta, C. P., 10.1080/00036818808839715, Appl. Anal. 26 (1988), 289-304. (1988) Zbl0611.34015MR0922976DOI10.1080/00036818808839715
- Hewitt, E., Stromberg, K., Real and Abstract Analysis, Springer Berlin-Heidelberg-New York (1975). (1975) Zbl0307.28001MR0367121
- Ma, R., 10.1155/S0161171200003057, Int. J. Math. Math. Sci. 23 (2000), 783-788. (2000) Zbl0959.34015MR1764120DOI10.1155/S0161171200003057
- O'Regan, D., 10.1016/S0362-546X(96)00026-0, Nonlinear Anal., Theory Methods Appl. 29 (1997), 221-245. (1997) Zbl0884.34028MR1446226DOI10.1016/S0362-546X(96)00026-0
- Yao, Q., A local existence theorem for nonlinear elastic beam equations fixed at left and simply supported at right, J. Nat. Sci. Nanjing Norm. Univ. 8 (2006), 1-4. (2006) Zbl1127.34308MR2247273
- Yao, Q., Existence of positive solutions to a singular beam equation rigidly fixed at left and simply supported at right, J. Zhengzhou Univ., Nat. Sci. Ed. 40 (2008), 1-5. (2008) Zbl1199.34085MR2458444
- Yao, Q., Positive solutions of nonlinear elastic beam equation rigidly fastened on the left and simply supported on the right, Nonlinear Anal., Theory Methods Appl. 69 (2008), 1570-1580. (2008) MR2424530
- Yao, Q., 10.1016/j.aml.2003.09.011, Appl. Math. Lett. 17 (2004), 1171-1175. (2004) MR2091853DOI10.1016/j.aml.2003.09.011
- Yao, Q., Solvability of a fourth-order beam equation with all-order derivatives, Southeast Asian Bull. Math. 32 (2008), 563-571. (2008) Zbl1174.34365MR2416172
- Yao, Q., Solvability of singular beam equations fixed at left and simply supported at right, J. Lanzhou Univ., Nat. Sci. 44 (2008), 115-118 Chinese. (2008) Zbl1174.34354MR2416279
- Yao, Q., 10.1016/j.camwa.2006.12.007, Comput. Math. Appl. 53 (2007), 741-749. (2007) MR2327630DOI10.1016/j.camwa.2006.12.007
- Wang, J., 10.1016/0362-546X(95)93091-H, Nonlinear Anal., Theory Methods Appl. 24 (1995), 555-561. (1995) Zbl0876.34017MR1315694DOI10.1016/0362-546X(95)93091-H
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.