Boundedness and compactness of the embedding between spaces with multiweighted derivatives when 1 q < p <

Zamira Abdikalikova; Ryskul Oinarov; Lars-Erik Persson

Czechoslovak Mathematical Journal (2011)

  • Volume: 61, Issue: 1, page 7-26
  • ISSN: 0011-4642

Abstract

top
We consider a new Sobolev type function space called the space with multiweighted derivatives W p , α ¯ n , where α ¯ = ( α 0 , α 1 , ... , α n ) , α i , i = 0 , 1 , ... , n , and f W p , α ¯ n = D α ¯ n f p + i = 0 n - 1 | D α ¯ i f ( 1 ) | , D α ¯ 0 f ( t ) = t α 0 f ( t ) , D α ¯ i f ( t ) = t α i d d t D α ¯ i - 1 f ( t ) , i = 1 , 2 , ... , n . We establish necessary and sufficient conditions for the boundedness and compactness of the embedding W p , α ¯ n W q , β ¯ m , when 1 q < p < , 0 m < n .

How to cite

top

Abdikalikova, Zamira, Oinarov, Ryskul, and Persson, Lars-Erik. "Boundedness and compactness of the embedding between spaces with multiweighted derivatives when $1 \le q < p <\infty $." Czechoslovak Mathematical Journal 61.1 (2011): 7-26. <http://eudml.org/doc/196770>.

@article{Abdikalikova2011,
abstract = {We consider a new Sobolev type function space called the space with multiweighted derivatives $W_\{p,\bar\{\alpha \}\}^n$, where $\bar\{\alpha \} = (\alpha _0, \alpha _1, \ldots , \alpha _n)$, $\alpha _i \in \mathbb \{R\}$, $i=0,1, \ldots , n$, and $\Vert f\Vert _\{W_\{p,\{\bar\{\alpha \}\}\}^n\} = \Vert D_\{\{\bar\{\alpha \}\}\}^n f\Vert _p + \sum _\{i=0\}^\{n-1\} |D_\{\bar\{\alpha \}\}^i f(1)|$, \[ D\_\{\{\bar\{\alpha \}\}\}^0 f(t) = t^\{\alpha \_0\} f(t), \quad D\_\{\{\bar\{\alpha \}\}\}^i f(t) = t^\{\alpha \_i\} \frac\{\{\rm d\}\}\{\{\rm d\}t\} D\_\{\{\bar\{\alpha \}\}\}^\{i-1\} f(t), \hspace\{5.0pt\}i=1, 2, \ldots , n. \] We establish necessary and sufficient conditions for the boundedness and compactness of the embedding $W_\{p,\{\bar\{\alpha \}\}\}^n \hookrightarrow W_\{q,\{\bar\{\beta \}\}\}^m $, when $1 \le q < p < \infty $, $0\le m <n$.},
author = {Abdikalikova, Zamira, Oinarov, Ryskul, Persson, Lars-Erik},
journal = {Czechoslovak Mathematical Journal},
keywords = {weighted function space; multiweighted derivative; embedding theorems; compactness; weighted function space; multiweighted derivative; embedding theorem; compactness},
language = {eng},
number = {1},
pages = {7-26},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Boundedness and compactness of the embedding between spaces with multiweighted derivatives when $1 \le q < p <\infty $},
url = {http://eudml.org/doc/196770},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Abdikalikova, Zamira
AU - Oinarov, Ryskul
AU - Persson, Lars-Erik
TI - Boundedness and compactness of the embedding between spaces with multiweighted derivatives when $1 \le q < p <\infty $
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 1
SP - 7
EP - 26
AB - We consider a new Sobolev type function space called the space with multiweighted derivatives $W_{p,\bar{\alpha }}^n$, where $\bar{\alpha } = (\alpha _0, \alpha _1, \ldots , \alpha _n)$, $\alpha _i \in \mathbb {R}$, $i=0,1, \ldots , n$, and $\Vert f\Vert _{W_{p,{\bar{\alpha }}}^n} = \Vert D_{{\bar{\alpha }}}^n f\Vert _p + \sum _{i=0}^{n-1} |D_{\bar{\alpha }}^i f(1)|$, \[ D_{{\bar{\alpha }}}^0 f(t) = t^{\alpha _0} f(t), \quad D_{{\bar{\alpha }}}^i f(t) = t^{\alpha _i} \frac{{\rm d}}{{\rm d}t} D_{{\bar{\alpha }}}^{i-1} f(t), \hspace{5.0pt}i=1, 2, \ldots , n. \] We establish necessary and sufficient conditions for the boundedness and compactness of the embedding $W_{p,{\bar{\alpha }}}^n \hookrightarrow W_{q,{\bar{\beta }}}^m $, when $1 \le q < p < \infty $, $0\le m <n$.
LA - eng
KW - weighted function space; multiweighted derivative; embedding theorems; compactness; weighted function space; multiweighted derivative; embedding theorem; compactness
UR - http://eudml.org/doc/196770
ER -

References

top
  1. Abdikalikova, Z. T., Baiarystanov, A., Oinarov, R., Compactness of embedding between spaces with multiweighted derivatives – the case p q , Math. Inequal. Appl Submitted. 
  2. Abdikalikova, Z. T., Kalybay, A. A., 10.1155/2010/405313, J. Funct. Spaces Appl. 8 (2010), 87-102. (2010) Zbl1189.41013MR2648767DOI10.1155/2010/405313
  3. Andô, T., On compactness of integral operators, Nederl. Akad. Wet., Proc., Ser. A 65 24 (1962), 235-239. (1962) MR0139016
  4. Kalybay, A. A., Interrelation of spaces with multiweighted derivatives, Vestnik Karaganda State University (1999), 13-22 Russian. (1999) 
  5. Kudryavtsev, L. D., Equivalent norms in weighted spaces, Proc. Steklov Inst. Math. 170 (1987), 185-218. (1987) Zbl0616.46033MR0790335
  6. Nikol'skiĭ, S. M., Approximation of Functions of Several Variables and Imbedding Theorems, 2nd ed., rev. and suppl, Nauka Moskva (1977), Russian. (1977) MR0506247
  7. Oinarov, R., Boundedness and compactness of superposition of fractional integration operators and their applications, In: Function Spaces, Differential Operators and Nonlinear Analysis 2004 Math. Institute, Acad. Sci. Czech Republic (2005), 213-235 (www.math.cas.cz/fsdona2004/oinarov.pdf). (2005) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.