On another extension of -Pfaff-Saalschütz formula
Czechoslovak Mathematical Journal (2010)
- Volume: 60, Issue: 4, page 1131-1137
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topWang, Mingjin. "On another extension of $q$-Pfaff-Saalschütz formula." Czechoslovak Mathematical Journal 60.4 (2010): 1131-1137. <http://eudml.org/doc/196802>.
@article{Wang2010,
abstract = {In this paper we give an extension of $q$-Pfaff-Saalschütz formula by means of Andrews-Askey integral. Applications of the extension are also given, which include an extension of $q$-Chu-Vandermonde convolution formula and some other $q$-identities.},
author = {Wang, Mingjin},
journal = {Czechoslovak Mathematical Journal},
keywords = {Andrews-Askey integral; $_\{r+1\}\phi _r$ basic hypergeometric series; $q$-Pfaff-Saalschütz formula; $q$-Chu-Vandermonde convolution formula; Andrews-Askey integral; basic hypergeometric series; -Pfaff-Saalschütz formula; -Chu-Vandermonde convolution formula},
language = {eng},
number = {4},
pages = {1131-1137},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On another extension of $q$-Pfaff-Saalschütz formula},
url = {http://eudml.org/doc/196802},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Wang, Mingjin
TI - On another extension of $q$-Pfaff-Saalschütz formula
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 4
SP - 1131
EP - 1137
AB - In this paper we give an extension of $q$-Pfaff-Saalschütz formula by means of Andrews-Askey integral. Applications of the extension are also given, which include an extension of $q$-Chu-Vandermonde convolution formula and some other $q$-identities.
LA - eng
KW - Andrews-Askey integral; $_{r+1}\phi _r$ basic hypergeometric series; $q$-Pfaff-Saalschütz formula; $q$-Chu-Vandermonde convolution formula; Andrews-Askey integral; basic hypergeometric series; -Pfaff-Saalschütz formula; -Chu-Vandermonde convolution formula
UR - http://eudml.org/doc/196802
ER -
References
top- Andrews, G. E., Askey, R., Another -extension of the beta function, Proc. Amer. Math. Soc. 81 (1981), 97-100. (1981) Zbl0471.33001MR0589145
- Andrews, G. E., -Series: Their Development and Applications in Analysis, Number Theory, Combinatorics, Physics and Computer Algebra, CBMS Regional Conference Lecture Series, vol. 66, Amer. Math, Providences, RI (1986). (1986) MR0858826
- Jackson, F. H., On -definite integrals, Quart. J. Pure and Appl. Math. 41 (1910), 193-203. (1910)
- Wang, M., 10.1016/j.jmaa.2007.11.011, J. Math. Anal. Appl. 341/2 (2008), 14870-1494. (2008) Zbl1142.33006MR2398544DOI10.1016/j.jmaa.2007.11.011
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.