Idempotents and the multiplicative group of some totally bounded rings

Mohamed A. Salim; Adela Tripe

Czechoslovak Mathematical Journal (2011)

  • Volume: 61, Issue: 2, page 509-519
  • ISSN: 0011-4642

Abstract

top
In this paper, we extend some results of D. Dolzan on finite rings to profinite rings, a complete classification of profinite commutative rings with a monothetic group of units is given. We also prove the metrizability of commutative profinite rings with monothetic group of units and without nonzero Boolean ideals. Using a property of Mersenne numbers, we construct a family of power 2 0 commutative non-isomorphic profinite semiprimitive rings with monothetic group of units.

How to cite

top

Salim, Mohamed A., and Tripe, Adela. "Idempotents and the multiplicative group of some totally bounded rings." Czechoslovak Mathematical Journal 61.2 (2011): 509-519. <http://eudml.org/doc/196811>.

@article{Salim2011,
abstract = {In this paper, we extend some results of D. Dolzan on finite rings to profinite rings, a complete classification of profinite commutative rings with a monothetic group of units is given. We also prove the metrizability of commutative profinite rings with monothetic group of units and without nonzero Boolean ideals. Using a property of Mersenne numbers, we construct a family of power $2^\{\aleph _0\}$ commutative non-isomorphic profinite semiprimitive rings with monothetic group of units.},
author = {Salim, Mohamed A., Tripe, Adela},
journal = {Czechoslovak Mathematical Journal},
keywords = {compact ring; group of units; Jacobson radical; left linearly compact ring; Mersenne number; monothetic group; primary ring; summable set; totally bounded ring; linearly compact rings; groups of units; Jacobson radical; Mersenne numbers; monothetic groups; primary rings; summable sets; totally bounded rings; profinite commutative rings; metrizability},
language = {eng},
number = {2},
pages = {509-519},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Idempotents and the multiplicative group of some totally bounded rings},
url = {http://eudml.org/doc/196811},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Salim, Mohamed A.
AU - Tripe, Adela
TI - Idempotents and the multiplicative group of some totally bounded rings
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 2
SP - 509
EP - 519
AB - In this paper, we extend some results of D. Dolzan on finite rings to profinite rings, a complete classification of profinite commutative rings with a monothetic group of units is given. We also prove the metrizability of commutative profinite rings with monothetic group of units and without nonzero Boolean ideals. Using a property of Mersenne numbers, we construct a family of power $2^{\aleph _0}$ commutative non-isomorphic profinite semiprimitive rings with monothetic group of units.
LA - eng
KW - compact ring; group of units; Jacobson radical; left linearly compact ring; Mersenne number; monothetic group; primary ring; summable set; totally bounded ring; linearly compact rings; groups of units; Jacobson radical; Mersenne numbers; monothetic groups; primary rings; summable sets; totally bounded rings; profinite commutative rings; metrizability
UR - http://eudml.org/doc/196811
ER -

References

top
  1. Bourbaki, N., Elemente der Mathematik. Allgemaine Topologie. Topologische Gruppen. Zahlen und die mit ihnen zusammenhängenden Gruppen und Räume (Russian), Nauka Moskau (1969). (1969) 
  2. Bourbaki, N., Elements de mathematique. Algebre commutative (Russian), Mir Moskau (1971). (1971) MR2272929
  3. Dantzig, D. Van, Zur topologischen Algebra, Mathematische Annalen 107 (1933), 591. (1933) 
  4. Dolžan, D., 10.1016/j.jalgebra.2006.03.022, J. Algebra 304 (2006), 271-277. (2006) MR2256389DOI10.1016/j.jalgebra.2006.03.022
  5. Eckstein, F., 10.1016/0021-8693(69)90044-1, J. Algebra 12 (1969), 177-190. (1969) Zbl0179.33501MR0241468DOI10.1016/0021-8693(69)90044-1
  6. Eldridge, K. E., Fischer, I., 10.1215/S0012-7094-67-03428-X, Duke Math. J. 34 (1967), 243-248. (1967) MR0214618DOI10.1215/S0012-7094-67-03428-X
  7. Gilmer, R. W., jun., 10.2307/2373134, Am. J. Math. 85 (1963), 447-452. (1963) Zbl0113.26501MR0154884DOI10.2307/2373134
  8. Kaplansky, I., 10.2307/2371662, Am. J. Math. 69 (1947), 153-183. (1947) Zbl0034.16604MR0019596DOI10.2307/2371662
  9. Leptin, H., 10.1007/BF01180634, Math. Z. 62 (1955), 241-267. (1955) Zbl0064.03201MR0069811DOI10.1007/BF01180634
  10. Nicholson, W. K., Zhou, Y., 10.1016/j.jalgebra.2005.01.020, J. Algebra 291 (2005), 297-311. (2005) Zbl1084.16023MR2158525DOI10.1016/j.jalgebra.2005.01.020
  11. Raghavendran, R., A class of finite rings, Compos. Math. 22 (1970), 49-57. (1970) Zbl0212.37901MR0263876
  12. Serre, J.-P., Cours d'aritmetique. Le mathematicien (French), Presses Universitaires de France Paris (1970). (1970) MR0255476
  13. Ursul, M., Topological Rings Satisfying Compactness Conditions. Mathematics and its Applications. Vol. 549, Kluwer Academic Publishers Dordrecht (2002). (2002) MR1959470

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.