Idempotents and the multiplicative group of some totally bounded rings
Czechoslovak Mathematical Journal (2011)
- Volume: 61, Issue: 2, page 509-519
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topSalim, Mohamed A., and Tripe, Adela. "Idempotents and the multiplicative group of some totally bounded rings." Czechoslovak Mathematical Journal 61.2 (2011): 509-519. <http://eudml.org/doc/196811>.
@article{Salim2011,
abstract = {In this paper, we extend some results of D. Dolzan on finite rings to profinite rings, a complete classification of profinite commutative rings with a monothetic group of units is given. We also prove the metrizability of commutative profinite rings with monothetic group of units and without nonzero Boolean ideals. Using a property of Mersenne numbers, we construct a family of power $2^\{\aleph _0\}$ commutative non-isomorphic profinite semiprimitive rings with monothetic group of units.},
author = {Salim, Mohamed A., Tripe, Adela},
journal = {Czechoslovak Mathematical Journal},
keywords = {compact ring; group of units; Jacobson radical; left linearly compact ring; Mersenne number; monothetic group; primary ring; summable set; totally bounded ring; linearly compact rings; groups of units; Jacobson radical; Mersenne numbers; monothetic groups; primary rings; summable sets; totally bounded rings; profinite commutative rings; metrizability},
language = {eng},
number = {2},
pages = {509-519},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Idempotents and the multiplicative group of some totally bounded rings},
url = {http://eudml.org/doc/196811},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Salim, Mohamed A.
AU - Tripe, Adela
TI - Idempotents and the multiplicative group of some totally bounded rings
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 2
SP - 509
EP - 519
AB - In this paper, we extend some results of D. Dolzan on finite rings to profinite rings, a complete classification of profinite commutative rings with a monothetic group of units is given. We also prove the metrizability of commutative profinite rings with monothetic group of units and without nonzero Boolean ideals. Using a property of Mersenne numbers, we construct a family of power $2^{\aleph _0}$ commutative non-isomorphic profinite semiprimitive rings with monothetic group of units.
LA - eng
KW - compact ring; group of units; Jacobson radical; left linearly compact ring; Mersenne number; monothetic group; primary ring; summable set; totally bounded ring; linearly compact rings; groups of units; Jacobson radical; Mersenne numbers; monothetic groups; primary rings; summable sets; totally bounded rings; profinite commutative rings; metrizability
UR - http://eudml.org/doc/196811
ER -
References
top- Bourbaki, N., Elemente der Mathematik. Allgemaine Topologie. Topologische Gruppen. Zahlen und die mit ihnen zusammenhängenden Gruppen und Räume (Russian), Nauka Moskau (1969). (1969)
- Bourbaki, N., Elements de mathematique. Algebre commutative (Russian), Mir Moskau (1971). (1971) MR2272929
- Dantzig, D. Van, Zur topologischen Algebra, Mathematische Annalen 107 (1933), 591. (1933)
- Dolžan, D., 10.1016/j.jalgebra.2006.03.022, J. Algebra 304 (2006), 271-277. (2006) MR2256389DOI10.1016/j.jalgebra.2006.03.022
- Eckstein, F., 10.1016/0021-8693(69)90044-1, J. Algebra 12 (1969), 177-190. (1969) Zbl0179.33501MR0241468DOI10.1016/0021-8693(69)90044-1
- Eldridge, K. E., Fischer, I., 10.1215/S0012-7094-67-03428-X, Duke Math. J. 34 (1967), 243-248. (1967) MR0214618DOI10.1215/S0012-7094-67-03428-X
- Gilmer, R. W., jun., 10.2307/2373134, Am. J. Math. 85 (1963), 447-452. (1963) Zbl0113.26501MR0154884DOI10.2307/2373134
- Kaplansky, I., 10.2307/2371662, Am. J. Math. 69 (1947), 153-183. (1947) Zbl0034.16604MR0019596DOI10.2307/2371662
- Leptin, H., 10.1007/BF01180634, Math. Z. 62 (1955), 241-267. (1955) Zbl0064.03201MR0069811DOI10.1007/BF01180634
- Nicholson, W. K., Zhou, Y., 10.1016/j.jalgebra.2005.01.020, J. Algebra 291 (2005), 297-311. (2005) Zbl1084.16023MR2158525DOI10.1016/j.jalgebra.2005.01.020
- Raghavendran, R., A class of finite rings, Compos. Math. 22 (1970), 49-57. (1970) Zbl0212.37901MR0263876
- Serre, J.-P., Cours d'aritmetique. Le mathematicien (French), Presses Universitaires de France Paris (1970). (1970) MR0255476
- Ursul, M., Topological Rings Satisfying Compactness Conditions. Mathematics and its Applications. Vol. 549, Kluwer Academic Publishers Dordrecht (2002). (2002) MR1959470
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.