Existence Principles for Singular Vector Nonlocal Boundary Value Problems with φ -Laplacian and their Applications

Staněk, Svatoslav

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2011)

  • Volume: 50, Issue: 1, page 99-118
  • ISSN: 0231-9721

Abstract

top
Existence principles for solutions of singular differential systems ( φ ( u ' ) ) ' = f ( t , u , u ' ) satisfying nonlocal boundary conditions are stated. Here φ is a homeomorphism N onto N and the Carathéodory function f may have singularities in its space variables. Applications of the existence principles are given.

How to cite

top

Staněk, Svatoslav. "Existence Principles for Singular Vector Nonlocal Boundary Value Problems with $\phi $-Laplacian and their Applications." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 50.1 (2011): 99-118. <http://eudml.org/doc/196832>.

@article{Staněk2011,
abstract = {Existence principles for solutions of singular differential systems$ (\phi (u^\{\prime \}))^\{\prime \}=f(t,u,u^\{\prime \}) $ satisfying nonlocal boundary conditions are stated. Here $\phi $ is a homeomorphism $\mathbb \{R\}^N$ onto $\mathbb \{R\}^N$ and the Carathéodory function $f$ may have singularities in its space variables. Applications of the existence principles are given.},
author = {Staněk, Svatoslav},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {singular boundary value problem; system of differential equations; nonlocal boundary condition; existence principle; positive solution; $\phi $-Laplacian; Leray–Schauder degree; singular boundary value problems; nonlocal boundary conditions; existence principle; -Laplacian, Leray-Schauder degree},
language = {eng},
number = {1},
pages = {99-118},
publisher = {Palacký University Olomouc},
title = {Existence Principles for Singular Vector Nonlocal Boundary Value Problems with $\phi $-Laplacian and their Applications},
url = {http://eudml.org/doc/196832},
volume = {50},
year = {2011},
}

TY - JOUR
AU - Staněk, Svatoslav
TI - Existence Principles for Singular Vector Nonlocal Boundary Value Problems with $\phi $-Laplacian and their Applications
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2011
PB - Palacký University Olomouc
VL - 50
IS - 1
SP - 99
EP - 118
AB - Existence principles for solutions of singular differential systems$ (\phi (u^{\prime }))^{\prime }=f(t,u,u^{\prime }) $ satisfying nonlocal boundary conditions are stated. Here $\phi $ is a homeomorphism $\mathbb {R}^N$ onto $\mathbb {R}^N$ and the Carathéodory function $f$ may have singularities in its space variables. Applications of the existence principles are given.
LA - eng
KW - singular boundary value problem; system of differential equations; nonlocal boundary condition; existence principle; positive solution; $\phi $-Laplacian; Leray–Schauder degree; singular boundary value problems; nonlocal boundary conditions; existence principle; -Laplacian, Leray-Schauder degree
UR - http://eudml.org/doc/196832
ER -

References

top
  1. Agarwal, R. P., O’Regan, D., Staněk, S., 10.1017/S0017089504001983, Glasg. Math. J. 46, 3 (2004), 537–550. (2004) MR2094809DOI10.1017/S0017089504001983
  2. Agarwal, R. P., O’Regan, D., Staněk, S., 10.1017/S0013091503000774, Proc. Eding. Math. Soc. 48, 2 (2005), 1–19. (2005) Zbl1066.34017MR2117708DOI10.1017/S0013091503000774
  3. Agarwal, R. P., O’Regan, D., Staněk, S., General existence principles for nonlocal boundary value problems with φ -Laplacian and their applications, Abstr. Appl. Anal. 2006, ID 96826, 1–30. MR2211656
  4. Amster, P., De Nápoli, P., 10.1016/j.jmaa.2006.04.001, J. Math. Anal. Appl. 326, 2 (2007), 1236–1243. (2007) Zbl1119.34010MR2280977DOI10.1016/j.jmaa.2006.04.001
  5. Bartle, R. G., A Modern Theory of Integration, AMS Providence, Rhode Island, 2001. (2001) Zbl0968.26001MR1817647
  6. Cabada, A., Pouso, R. L., 10.1016/S0362-546X(02)00122-0, Nonlinear Anal. 52, 2 (2003), 557–572. (2003) Zbl1029.34018MR1937640DOI10.1016/S0362-546X(02)00122-0
  7. Chu, J., O’Regan, D., 10.1007/s10440-008-9277-4, Acta Appl. Math. 105 (2008), 323–338. (2008) MR2481085DOI10.1007/s10440-008-9277-4
  8. Dambrosio, W., 10.1007/BF03322100, Result. Math. 36, 1-2 (1999), 34–54. (1999) Zbl0942.34015MR1706481DOI10.1007/BF03322100
  9. Deimling, K., Nonlinear Functional Analysis, Springer, Berlin, 1985. (1985) Zbl0559.47040MR0787404
  10. Fan, X. L., Fan, X., 10.1016/S0022-247X(02)00376-1, J. Math. Anal. Appl. 282, 2 (2003), 453–464. (2003) Zbl1033.34023MR1989103DOI10.1016/S0022-247X(02)00376-1
  11. Fan, X. L., Wu, H. Q., Wang, F. Z., 10.1016/S0362-546X(02)00124-4, Nonlinear Anal. 52 (2003), 585–594. (2003) Zbl1025.34017MR1937642DOI10.1016/S0362-546X(02)00124-4
  12. Hewitt, E., Stromberg, K., Real and Abstract Analysis, Springer, New York, 1965. (1965) Zbl0137.03202MR0367121
  13. Jebelean, P., Precup, R., 10.1080/00036810902889567, Appl. Anal. 89, 2 (2010), 221–228. (2010) Zbl1189.34040MR2598811DOI10.1080/00036810902889567
  14. Liu, W., Liu, L., Wu, Y., 10.1016/j.amc.2008.12.019, Appl. Math. Comput. 208 (2008), 511–519. (2008) DOI10.1016/j.amc.2008.12.019
  15. Lü, H., O’Regan, D., Agarwal, R. P., 10.1080/00036810500334339, Appl. Anal. 85 (2006), 4, 363–371. (2006) Zbl1100.34018MR2196675DOI10.1080/00036810500334339
  16. Manásevich, R., Mawhin, J., 10.1006/jdeq.1998.3425, J. Differential Equations 8 (1998), 367–393. (1998) DOI10.1006/jdeq.1998.3425
  17. Manásevich, R., Mawhin, J., Boundary value problems for nonlinear perturbations of vector p -Laplacian-like operators, J. Korean Math. Soc. 37, 5 (2000), 665–685. (2000) MR1783579
  18. Mawhin, J., 10.1016/S0362-546X(00)85028-2, Nonlinear Anal. 40 (2000), 497–503. (2000) MR1768905DOI10.1016/S0362-546X(00)85028-2
  19. Mawhin, J., Ureña, A. J., A Hartman-Nagumo inequality for the vector ordinary p-Laplacian and applications to nonlinear boundary value problems, J. Inequal. Appl. 7, 5 (2002), 701–725. (2002) Zbl1041.34011MR1931262
  20. Nowakowski, A., Orpel, A., Positive solutions for nonlocal boundary-value problem with vector-valued response, Electronic J. Diff. Equations 2002, 46 (2002), 1–15. (2002) 
  21. del Pino, M. A., Manásevich, R. F., T -periodic solutions for a second order system with singular nonlinearities, Differential Integral Equations 8 (1995), 1873–1883. (1995) MR1347988
  22. Rachůnková, I., Staněk, S., General existence principle for singular BVPs and its application, Georgian Math. J. 11, 3 (2004), 549–565. (2004) Zbl1059.34016
  23. Rachůnková, I., Staněk, S., Tvrdý, M., 10.1016/S1874-5725(06)80011-8, In: Handbook of Differential Equations, Ordinary Differential Equations, Vol. 3 (Edited by A. Cañada, P. Drábek, A. Fonda), 607–723, Elsevier, Amsterdam, 2006. (2006) DOI10.1016/S1874-5725(06)80011-8
  24. Rachůnková, I., Staněk, S., Tvrdý, M., Solvability of Nonlinear Singular Problems for Ordinary Differential Equations, Hindawi, New York, 2008. (2008) Zbl1228.34003MR2572243
  25. Staněk, S., 10.1007/PL00000426, Arch. Math. 74 (2000), 452–466. (2000) MR1753544DOI10.1007/PL00000426
  26. Staněk, S., 10.1016/S0362-546X(97)00484-7, Nonlinear Anal. 32 (1998), 427–438. (1998) MR1610598DOI10.1016/S0362-546X(97)00484-7
  27. Staněk, S., 10.1016/j.mcm.2003.11.003, Math. Comput. Modelling 40, 1-2 (2004), 101–116. (2004) Zbl1068.34019MR2091529DOI10.1016/j.mcm.2003.11.003
  28. Staněk, S., A nonlocal singular boundary value problem for second-order differential equations, Math. Notes (Miskolc) 5, 1 (2004), 91–104. (2004) Zbl1048.34041MR2040979
  29. Staněk, S., Existence principles for higher order nonlocal boundary-value problems and their applications to singular Sturm–Liouville problems, Ukr. Mat. J. 60 (2008), 240–259. (2008) Zbl1164.34341MR2424641
  30. Šeda, V., A correct problem at resonance, Differ. Integral Equ. 2, 4 (1989), 389–396. (1989) MR0996746
  31. Šeda, V., On correctness of the generalized boundary value problems for systems of ordinary differential equations, Arch. Math. (Brno) 26, 2-3 (1990), 181–185. (1990) MR1188278
  32. Zhang, M., 10.1016/S0362-546X(96)00037-5, Nonlinear Anal. 29, 1 (1997), 41–51. (1997) Zbl0876.35039MR1447568DOI10.1016/S0362-546X(96)00037-5
  33. Wei, Z., 10.1016/j.jmaa.2006.06.053, J. Math. Anal. Appl. 328 (2007), 1255–1267. (2007) MR2290050DOI10.1016/j.jmaa.2006.06.053

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.