Existence Principles for Singular Vector Nonlocal Boundary Value Problems with -Laplacian and their Applications
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2011)
- Volume: 50, Issue: 1, page 99-118
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topStaněk, Svatoslav. "Existence Principles for Singular Vector Nonlocal Boundary Value Problems with $\phi $-Laplacian and their Applications." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 50.1 (2011): 99-118. <http://eudml.org/doc/196832>.
@article{Staněk2011,
abstract = {Existence principles for solutions of singular differential systems$ (\phi (u^\{\prime \}))^\{\prime \}=f(t,u,u^\{\prime \}) $ satisfying nonlocal boundary conditions are stated. Here $\phi $ is a homeomorphism $\mathbb \{R\}^N$ onto $\mathbb \{R\}^N$ and the Carathéodory function $f$ may have singularities in its space variables. Applications of the existence principles are given.},
author = {Staněk, Svatoslav},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {singular boundary value problem; system of differential equations; nonlocal boundary condition; existence principle; positive solution; $\phi $-Laplacian; Leray–Schauder degree; singular boundary value problems; nonlocal boundary conditions; existence principle; -Laplacian, Leray-Schauder degree},
language = {eng},
number = {1},
pages = {99-118},
publisher = {Palacký University Olomouc},
title = {Existence Principles for Singular Vector Nonlocal Boundary Value Problems with $\phi $-Laplacian and their Applications},
url = {http://eudml.org/doc/196832},
volume = {50},
year = {2011},
}
TY - JOUR
AU - Staněk, Svatoslav
TI - Existence Principles for Singular Vector Nonlocal Boundary Value Problems with $\phi $-Laplacian and their Applications
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2011
PB - Palacký University Olomouc
VL - 50
IS - 1
SP - 99
EP - 118
AB - Existence principles for solutions of singular differential systems$ (\phi (u^{\prime }))^{\prime }=f(t,u,u^{\prime }) $ satisfying nonlocal boundary conditions are stated. Here $\phi $ is a homeomorphism $\mathbb {R}^N$ onto $\mathbb {R}^N$ and the Carathéodory function $f$ may have singularities in its space variables. Applications of the existence principles are given.
LA - eng
KW - singular boundary value problem; system of differential equations; nonlocal boundary condition; existence principle; positive solution; $\phi $-Laplacian; Leray–Schauder degree; singular boundary value problems; nonlocal boundary conditions; existence principle; -Laplacian, Leray-Schauder degree
UR - http://eudml.org/doc/196832
ER -
References
top- Agarwal, R. P., O’Regan, D., Staněk, S., 10.1017/S0017089504001983, Glasg. Math. J. 46, 3 (2004), 537–550. (2004) MR2094809DOI10.1017/S0017089504001983
- Agarwal, R. P., O’Regan, D., Staněk, S., 10.1017/S0013091503000774, Proc. Eding. Math. Soc. 48, 2 (2005), 1–19. (2005) Zbl1066.34017MR2117708DOI10.1017/S0013091503000774
- Agarwal, R. P., O’Regan, D., Staněk, S., General existence principles for nonlocal boundary value problems with -Laplacian and their applications, Abstr. Appl. Anal. 2006, ID 96826, 1–30. MR2211656
- Amster, P., De Nápoli, P., 10.1016/j.jmaa.2006.04.001, J. Math. Anal. Appl. 326, 2 (2007), 1236–1243. (2007) Zbl1119.34010MR2280977DOI10.1016/j.jmaa.2006.04.001
- Bartle, R. G., A Modern Theory of Integration, AMS Providence, Rhode Island, 2001. (2001) Zbl0968.26001MR1817647
- Cabada, A., Pouso, R. L., 10.1016/S0362-546X(02)00122-0, Nonlinear Anal. 52, 2 (2003), 557–572. (2003) Zbl1029.34018MR1937640DOI10.1016/S0362-546X(02)00122-0
- Chu, J., O’Regan, D., 10.1007/s10440-008-9277-4, Acta Appl. Math. 105 (2008), 323–338. (2008) MR2481085DOI10.1007/s10440-008-9277-4
- Dambrosio, W., 10.1007/BF03322100, Result. Math. 36, 1-2 (1999), 34–54. (1999) Zbl0942.34015MR1706481DOI10.1007/BF03322100
- Deimling, K., Nonlinear Functional Analysis, Springer, Berlin, 1985. (1985) Zbl0559.47040MR0787404
- Fan, X. L., Fan, X., 10.1016/S0022-247X(02)00376-1, J. Math. Anal. Appl. 282, 2 (2003), 453–464. (2003) Zbl1033.34023MR1989103DOI10.1016/S0022-247X(02)00376-1
- Fan, X. L., Wu, H. Q., Wang, F. Z., 10.1016/S0362-546X(02)00124-4, Nonlinear Anal. 52 (2003), 585–594. (2003) Zbl1025.34017MR1937642DOI10.1016/S0362-546X(02)00124-4
- Hewitt, E., Stromberg, K., Real and Abstract Analysis, Springer, New York, 1965. (1965) Zbl0137.03202MR0367121
- Jebelean, P., Precup, R., 10.1080/00036810902889567, Appl. Anal. 89, 2 (2010), 221–228. (2010) Zbl1189.34040MR2598811DOI10.1080/00036810902889567
- Liu, W., Liu, L., Wu, Y., 10.1016/j.amc.2008.12.019, Appl. Math. Comput. 208 (2008), 511–519. (2008) DOI10.1016/j.amc.2008.12.019
- Lü, H., O’Regan, D., Agarwal, R. P., 10.1080/00036810500334339, Appl. Anal. 85 (2006), 4, 363–371. (2006) Zbl1100.34018MR2196675DOI10.1080/00036810500334339
- Manásevich, R., Mawhin, J., 10.1006/jdeq.1998.3425, J. Differential Equations 8 (1998), 367–393. (1998) DOI10.1006/jdeq.1998.3425
- Manásevich, R., Mawhin, J., Boundary value problems for nonlinear perturbations of vector -Laplacian-like operators, J. Korean Math. Soc. 37, 5 (2000), 665–685. (2000) MR1783579
- Mawhin, J., 10.1016/S0362-546X(00)85028-2, Nonlinear Anal. 40 (2000), 497–503. (2000) MR1768905DOI10.1016/S0362-546X(00)85028-2
- Mawhin, J., Ureña, A. J., A Hartman-Nagumo inequality for the vector ordinary p-Laplacian and applications to nonlinear boundary value problems, J. Inequal. Appl. 7, 5 (2002), 701–725. (2002) Zbl1041.34011MR1931262
- Nowakowski, A., Orpel, A., Positive solutions for nonlocal boundary-value problem with vector-valued response, Electronic J. Diff. Equations 2002, 46 (2002), 1–15. (2002)
- del Pino, M. A., Manásevich, R. F., -periodic solutions for a second order system with singular nonlinearities, Differential Integral Equations 8 (1995), 1873–1883. (1995) MR1347988
- Rachůnková, I., Staněk, S., General existence principle for singular BVPs and its application, Georgian Math. J. 11, 3 (2004), 549–565. (2004) Zbl1059.34016
- Rachůnková, I., Staněk, S., Tvrdý, M., 10.1016/S1874-5725(06)80011-8, In: Handbook of Differential Equations, Ordinary Differential Equations, Vol. 3 (Edited by A. Cañada, P. Drábek, A. Fonda), 607–723, Elsevier, Amsterdam, 2006. (2006) DOI10.1016/S1874-5725(06)80011-8
- Rachůnková, I., Staněk, S., Tvrdý, M., Solvability of Nonlinear Singular Problems for Ordinary Differential Equations, Hindawi, New York, 2008. (2008) Zbl1228.34003MR2572243
- Staněk, S., 10.1007/PL00000426, Arch. Math. 74 (2000), 452–466. (2000) MR1753544DOI10.1007/PL00000426
- Staněk, S., 10.1016/S0362-546X(97)00484-7, Nonlinear Anal. 32 (1998), 427–438. (1998) MR1610598DOI10.1016/S0362-546X(97)00484-7
- Staněk, S., 10.1016/j.mcm.2003.11.003, Math. Comput. Modelling 40, 1-2 (2004), 101–116. (2004) Zbl1068.34019MR2091529DOI10.1016/j.mcm.2003.11.003
- Staněk, S., A nonlocal singular boundary value problem for second-order differential equations, Math. Notes (Miskolc) 5, 1 (2004), 91–104. (2004) Zbl1048.34041MR2040979
- Staněk, S., Existence principles for higher order nonlocal boundary-value problems and their applications to singular Sturm–Liouville problems, Ukr. Mat. J. 60 (2008), 240–259. (2008) Zbl1164.34341MR2424641
- Šeda, V., A correct problem at resonance, Differ. Integral Equ. 2, 4 (1989), 389–396. (1989) MR0996746
- Šeda, V., On correctness of the generalized boundary value problems for systems of ordinary differential equations, Arch. Math. (Brno) 26, 2-3 (1990), 181–185. (1990) MR1188278
- Zhang, M., 10.1016/S0362-546X(96)00037-5, Nonlinear Anal. 29, 1 (1997), 41–51. (1997) Zbl0876.35039MR1447568DOI10.1016/S0362-546X(96)00037-5
- Wei, Z., 10.1016/j.jmaa.2006.06.053, J. Math. Anal. Appl. 328 (2007), 1255–1267. (2007) MR2290050DOI10.1016/j.jmaa.2006.06.053
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.