Second order nonlinear differential equations with linear impulse and periodic boundary conditions

Aydin Huseynov

Applications of Mathematics (2011)

  • Volume: 56, Issue: 6, page 591-606
  • ISSN: 0862-7940

Abstract

top
In this study, we establish existence and uniqueness theorems for solutions of second order nonlinear differential equations on a finite interval subject to linear impulse conditions and periodic boundary conditions. The results obtained yield periodic solutions of the corresponding periodic impulsive nonlinear differential equation on the whole real axis.

How to cite

top

Huseynov, Aydin. "Second order nonlinear differential equations with linear impulse and periodic boundary conditions." Applications of Mathematics 56.6 (2011): 591-606. <http://eudml.org/doc/196881>.

@article{Huseynov2011,
abstract = {In this study, we establish existence and uniqueness theorems for solutions of second order nonlinear differential equations on a finite interval subject to linear impulse conditions and periodic boundary conditions. The results obtained yield periodic solutions of the corresponding periodic impulsive nonlinear differential equation on the whole real axis.},
author = {Huseynov, Aydin},
journal = {Applications of Mathematics},
keywords = {impulse conditions; periodic boundary conditions; Green's function; fixed point theorems; impulse conditions; periodic solution; Green's function; fixed point theorem},
language = {eng},
number = {6},
pages = {591-606},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Second order nonlinear differential equations with linear impulse and periodic boundary conditions},
url = {http://eudml.org/doc/196881},
volume = {56},
year = {2011},
}

TY - JOUR
AU - Huseynov, Aydin
TI - Second order nonlinear differential equations with linear impulse and periodic boundary conditions
JO - Applications of Mathematics
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 6
SP - 591
EP - 606
AB - In this study, we establish existence and uniqueness theorems for solutions of second order nonlinear differential equations on a finite interval subject to linear impulse conditions and periodic boundary conditions. The results obtained yield periodic solutions of the corresponding periodic impulsive nonlinear differential equation on the whole real axis.
LA - eng
KW - impulse conditions; periodic boundary conditions; Green's function; fixed point theorems; impulse conditions; periodic solution; Green's function; fixed point theorem
UR - http://eudml.org/doc/196881
ER -

References

top
  1. Atici, F. M., Guseinov, G. Sh., 10.1016/S0377-0427(00)00438-6, J. Comput. Appl. Math. 132 (2001), 341-356. (2001) MR1840633DOI10.1016/S0377-0427(00)00438-6
  2. Bainov, D. D., Simeonov, P. S., Impulsive Differential Equations: Periodic Solutions and Applications, Longman Scientific & Technical/John Wiley & Sons Harlow/New York (1993). (1993) Zbl0815.34001MR1266625
  3. Benchohra, M., Henderson, J., Ntouyas, S., Impulsive Differential Equations and Inclusions, Hindawi Publishing Corporation New York (2006). (2006) Zbl1130.34003MR2322133
  4. Chen, J., Tisdell, C. C., Yuan, R., 10.1016/j.jmaa.2006.09.021, J. Math. Anal. Appl. 331 (2007), 902-912. (2007) Zbl1123.34022MR2313690DOI10.1016/j.jmaa.2006.09.021
  5. Dong, Y., 10.1016/0362-546X(95)00068-7, Nonlinear Anal., Theory Methods Appl. 27 (1996), 811-820. (1996) Zbl0858.34035MR1402168DOI10.1016/0362-546X(95)00068-7
  6. Eloe, P. W., Henderson, J., 10.1216/rmjm/1181071893, Rocky Mt. J. Math. 27 (1997), 785-799. (1997) Zbl0902.34014MR1490275DOI10.1216/rmjm/1181071893
  7. Franco, D., Nieto, J. J., 10.1016/S0377-0427(97)00212-4, J. Comput. Appl. Math. 88 (1998), 149-159. (1998) Zbl0898.34010MR1609074DOI10.1016/S0377-0427(97)00212-4
  8. Fraňková, D., Regulated functions, Math. Bohem. 116 (1991), 20-59. (1991) MR1100424
  9. George, R. K., Nandakumaran, A. K., Arapostathis, A., 10.1006/jmaa.1999.6632, J. Math. Anal. Appl. 241 (2000), 276-283. (2000) Zbl0965.93015MR1739206DOI10.1006/jmaa.1999.6632
  10. Guan, Z. H., Chen, G., Ueta, T., 10.1109/9.880633, IEEE Trans. Autom. Control 45 (2000), 1724-1727. (2000) Zbl0990.93105MR1791705DOI10.1109/9.880633
  11. Hu, S., Lakshmikantham, V., 10.1016/0362-546X(89)90036-9, Nonlinear Anal., Theory Methods Appl. 13 (1989), 75-85. (1989) Zbl0712.34033MR0973370DOI10.1016/0362-546X(89)90036-9
  12. Huseynov, A., 10.1016/j.amc.2008.11.034, Appl. Math. Comput. 208 (2009), 197-205. (2009) Zbl1170.34018MR2490786DOI10.1016/j.amc.2008.11.034
  13. Khristova, S. G., Bainov, D. D., 10.1016/0022-247X(87)90174-0, J. Math. Anal. Appl. 125 (1987), 192-202. (1987) Zbl0636.34031MR0891359DOI10.1016/0022-247X(87)90174-0
  14. Lakmeche, A., Arino, O., Bifurcation of non trivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment, Dyn. Contin. Discrete Impuls. Syst. 7 (2000), 265-287. (2000) Zbl1011.34031MR1744966
  15. Lakshmikantham, V., Bainov, D. D., Simeonov, P. S., Theory of Impulsive Differential Equations, World Scientific Singapore (1989). (1989) Zbl0719.34002MR1082551
  16. Lakshmikantham, V., Murty, K. N., Sivasundaram, S., 10.1016/0096-3003(92)90123-I, Appl. Math. Comput. 50 (1992), 157-166. (1992) Zbl0769.34022MR1172625DOI10.1016/0096-3003(92)90123-I
  17. Lenci, S., Rega, G., 10.1016/S0960-0779(00)00030-8, Chaos Solitons Fractals 11 (2000), 2453-2472. (2000) Zbl0964.70018MR1787844DOI10.1016/S0960-0779(00)00030-8
  18. Li, J., Nieto, J. J., Shen, J., 10.1016/j.jmaa.2005.04.005, J. Math. Anal. Appl. 325 (2007), 226-236. (2007) Zbl1110.34019MR2273040DOI10.1016/j.jmaa.2005.04.005
  19. Liz, E., Nieto, J. J., The monotone iterative technique for periodic boundary value problems of second order impulsive differential equations, Commentat. Math. Univ. Carol. 34 (1993), 405-411. (1993) Zbl0780.34006MR1243071
  20. Nenov, S., 10.1016/S0362-546X(97)00627-5, Nonlinear Anal., Theory Methods Appl. 36 (1999), 881-890. (1999) Zbl0941.49021MR1682836DOI10.1016/S0362-546X(97)00627-5
  21. Nieto, J. J., 10.1006/jmaa.1997.5207, J. Math. Anal. Appl. 205 (1997), 423-433. (1997) Zbl0870.34009MR1428357DOI10.1006/jmaa.1997.5207
  22. Nieto, J. J., 10.1016/S0893-9659(01)00163-X, Appl. Math. Lett. 15 (2002), 489-493. (2002) Zbl1022.34025MR1902284DOI10.1016/S0893-9659(01)00163-X
  23. Nieto, J. J., 10.1016/S0362-546X(01)00889-6, Nonlinear. Anal., Theory Methods Appl. 51 (2002), 1223-1232. (2002) Zbl1015.34010MR1926625DOI10.1016/S0362-546X(01)00889-6
  24. Samoilenko, A. M., Perestyuk, N. A., Impulsive Differential Equations, World Scientific Singapore (1995). (1995) Zbl0837.34003MR1355787
  25. Tian, Y., Solutions to boundary-value problems for second-order impulsive differential equations at resonance, Electron. J. Differ. Equ. 2008, No. 18 (2008), 1-9. (2008) Zbl1139.34027MR2383382
  26. Vatsala, A. S., Sun, Y., 10.1080/00036819208840074, Appl. Anal. 44 (1992), 145-158. (1992) Zbl0753.34008MR1284994DOI10.1080/00036819208840074

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.