Stanley decompositions and polarization
Czechoslovak Mathematical Journal (2011)
- Volume: 61, Issue: 2, page 483-493
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topAhmad, Sarfraz. "Stanley decompositions and polarization." Czechoslovak Mathematical Journal 61.2 (2011): 483-493. <http://eudml.org/doc/196887>.
@article{Ahmad2011,
abstract = {We define nice partitions of the multicomplex associated with a Stanley ideal. As the main result we show that if the monomial ideal $I$ is a CM Stanley ideal, then $I^p$ is a Stanley ideal as well, where $I^p$ is the polarization of $I$.},
author = {Ahmad, Sarfraz},
journal = {Czechoslovak Mathematical Journal},
keywords = {monomial ideals; partitionable simplicial complexes; multicomplexes; Stanley ideals; polarization; monomial ideal; partitionable simplicial complexes; multicomplexes; Stanley ideal; polarization},
language = {eng},
number = {2},
pages = {483-493},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Stanley decompositions and polarization},
url = {http://eudml.org/doc/196887},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Ahmad, Sarfraz
TI - Stanley decompositions and polarization
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 2
SP - 483
EP - 493
AB - We define nice partitions of the multicomplex associated with a Stanley ideal. As the main result we show that if the monomial ideal $I$ is a CM Stanley ideal, then $I^p$ is a Stanley ideal as well, where $I^p$ is the polarization of $I$.
LA - eng
KW - monomial ideals; partitionable simplicial complexes; multicomplexes; Stanley ideals; polarization; monomial ideal; partitionable simplicial complexes; multicomplexes; Stanley ideal; polarization
UR - http://eudml.org/doc/196887
ER -
References
top- Anwar, I., Janet's algorithm, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 51(99) (2008), 11-19. (2008) Zbl1164.13010MR2396280
- Anwar, I., Popescu, D., 10.1016/j.jalgebra.2007.06.005, J. Algebra 318 (2007), 1027-1031. (2007) Zbl1132.13009MR2371984DOI10.1016/j.jalgebra.2007.06.005
- Bruns, W., Herzog, J., Cohen-Macaulay Rings. Rev. edition, Cambridge University Press Cambridge (1998). (1998) MR1251956
- Cimpoeas, M., Stanley depth of complete intersection monomial ideals, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 51(99) (2008), 205-211. (2008) Zbl1174.13033MR2433498
- Cimpoeas, M., Stanley depth for monomial ideals in three variables, Preprint (2008), Arxiv:Math.AC/0807.2166. (2008) MR3085722
- Herzog, J., Jahan, A. Soleyman, Yassemi, S., 10.1007/s10801-007-0076-1, J. Algebr. Comb. 27 (2008), 113-125. (2008) MR2366164DOI10.1007/s10801-007-0076-1
- Herzog, J., Jahan, A. Soleyman, Zheng, X., Skeletons of monomial ideals, Math. Nachr (to appear). MR2744136
- Herzog, J., Popescu, D., 10.1007/s00229-006-0044-4, Manuscr. Math. 121 (2006), 385-410. (2006) Zbl1107.13017MR2267659DOI10.1007/s00229-006-0044-4
- Herzog, J., Vladoiu, M., Zheng, X., 10.1016/j.jalgebra.2008.01.006, J. Algebra 322 (2009), 3151-3169. (2009) Zbl1186.13019MR2567414DOI10.1016/j.jalgebra.2008.01.006
- Jahan, A. Soleyman, 10.1016/j.jalgebra.2006.11.002, J. Algebra 312 (2007), 1011-1032. (2007) MR2333198DOI10.1016/j.jalgebra.2006.11.002
- Nasir, S., Stanley decomposition and localization, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 51(99) (2008), 151-158. (2008) MR2423489
- Popescu, D., 10.1016/j.jalgebra.2009.03.009, J. Algebra 321 (2009), 2782-2797. (2009) Zbl1179.13016MR2512626DOI10.1016/j.jalgebra.2009.03.009
- Popescu, D., Qureshi, Muhammad I., Computing the Stanley depth, Arxiv:Math. AC/0907.0912. Zbl1201.13004MR2609185
- Rauf, A., Stanley decompositions, pretty clean filtrations and reductions modulo regular elements, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 50(98) (2007), 347-354. (2007) Zbl1155.13311MR2370321
- Stanley, R. P., 10.1007/BF01394054, Invent. Math. 68 (1982), 175-193. (1982) Zbl0516.10009MR0666158DOI10.1007/BF01394054
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.