Complex Oscillation Theory of Differential Polynomials
Abdallah El Farissi; Benharrat Belaïdi
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2011)
- Volume: 50, Issue: 1, page 43-52
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topEl Farissi, Abdallah, and Belaïdi, Benharrat. "Complex Oscillation Theory of Differential Polynomials." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 50.1 (2011): 43-52. <http://eudml.org/doc/196959>.
@article{ElFarissi2011,
abstract = {In this paper, we investigate the relationship between small functions and differential polynomials $g_\{f\}(z)=d_\{2\}f^\{\prime \prime \}+d_\{1\}f^\{\prime \}+d_\{0\}f$, where $d_\{0\}(z)$, $d_\{1\}(z)$, $d_\{2\}(z)$ are entire functions that are not all equal to zero with $\rho (d_j)<1$$(j=0,1,2) $ generated by solutions of the differential equation $f^\{\prime \prime \}+A_\{1\}(z) e^\{az\}f^\{\prime \}+A_\{0\}(z) e^\{bz\}f=F$, where $a,b$ are complex numbers that satisfy $ab( a-b) \ne 0$ and $A_\{j\}( z) \lnot \equiv 0$ ($j=0,1$), $F(z) \lnot \equiv 0$ are entire functions such that $\max \left\lbrace \rho (A_j),\, j=0,1,\, \rho (F)\right\rbrace <1.$},
author = {El Farissi, Abdallah, Belaïdi, Benharrat},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {linear differential equations; differential polynomials; entire solutions; order of growth; exponent of convergence of zeros; exponent of convergence of distinct zeros; linear differential equations; differential polynomials; entire solutions; order of growth; exponent of convergence of zeros; exponent of convergence of distinct zeros},
language = {eng},
number = {1},
pages = {43-52},
publisher = {Palacký University Olomouc},
title = {Complex Oscillation Theory of Differential Polynomials},
url = {http://eudml.org/doc/196959},
volume = {50},
year = {2011},
}
TY - JOUR
AU - El Farissi, Abdallah
AU - Belaïdi, Benharrat
TI - Complex Oscillation Theory of Differential Polynomials
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2011
PB - Palacký University Olomouc
VL - 50
IS - 1
SP - 43
EP - 52
AB - In this paper, we investigate the relationship between small functions and differential polynomials $g_{f}(z)=d_{2}f^{\prime \prime }+d_{1}f^{\prime }+d_{0}f$, where $d_{0}(z)$, $d_{1}(z)$, $d_{2}(z)$ are entire functions that are not all equal to zero with $\rho (d_j)<1$$(j=0,1,2) $ generated by solutions of the differential equation $f^{\prime \prime }+A_{1}(z) e^{az}f^{\prime }+A_{0}(z) e^{bz}f=F$, where $a,b$ are complex numbers that satisfy $ab( a-b) \ne 0$ and $A_{j}( z) \lnot \equiv 0$ ($j=0,1$), $F(z) \lnot \equiv 0$ are entire functions such that $\max \left\lbrace \rho (A_j),\, j=0,1,\, \rho (F)\right\rbrace <1.$
LA - eng
KW - linear differential equations; differential polynomials; entire solutions; order of growth; exponent of convergence of zeros; exponent of convergence of distinct zeros; linear differential equations; differential polynomials; entire solutions; order of growth; exponent of convergence of zeros; exponent of convergence of distinct zeros
UR - http://eudml.org/doc/196959
ER -
References
top- Amemiya, I., Ozawa, M., Non-existence of finite order solutions of , Hokkaido Math. J. 10 (1981), 1–17 (special issue). (1981) MR0662294
- Belaïdi, B., Growth and oscillation theory of solutions of some linear differential equations, Mat. Vesnik 60, 4 (2008), 233–246. (2008) MR2465805
- Belaïdi, B., Oscillation of fixed points of solutions of some linear differential equations, Acta Math. Univ. Comenian. (N.S.) 77, 2 (2008), 263–269. (2008) Zbl1174.34528MR2489196
- Belaïdi, B., El Farissi, A., 10.1215/0023608X-2009-019, Kyoto J. Math. Vol. 50, 2 (2010), 453–468. (2010) Zbl1203.34148MR2666664DOI10.1215/0023608X-2009-019
- Chen, Z. X., Zeros of meromorphic solutions of higher order linear differential equations, Analysis 14 (1994), 425–438. (1994) Zbl0815.34003MR1310623
- Chen, Z. X., The fixed points and hyper-order of solutions of second order complex differential equations, (in Chinese), Acta Math. Sci. Ser. A Chin. Ed. 20, 3 (2000), 425–432. (2000) Zbl0980.30022MR1792926
- Chen, Z. X., The growth of solutions of where the order , Sci. China Ser. A 45, 3 (2002), 290–300. (2002) MR1903625
- Chen, Z. X., Shon, K. H., 10.1007/s10114-004-0434-z, Acta Math. Sin. (Engl. Ser.) 21, 4 (2005), 753–764. (2005) Zbl1100.34067MR2156950DOI10.1007/s10114-004-0434-z
- Frei, M., 10.1007/BF02567016, Comment. Math. Helv. 35 (1961), 201–222. (1961) Zbl0115.06903MR0126008DOI10.1007/BF02567016
- Frei, M., 10.1007/BF02566887, Comment. Math. Helv. 36 (1961), 1–8. (1961) Zbl0115.06904MR0151657DOI10.1007/BF02566887
- Gundersen, G. G., On the question of whether can admit a solution of finite order, Proc. Roy. Soc. Edinburgh Sect. A 102, 1-2 (1986), 9–17. (1986) MR0837157
- Hayman, W. K., Meromorphic functions, Clarendon Press, Oxford, 1964. (1964) Zbl0115.06203MR0164038
- Laine, I., Rieppo, J., 10.1080/02781070410001701092, Complex Var. Theory Appl. 49, 12 (2004), 897–911. (2004) Zbl1080.34076MR2101213DOI10.1080/02781070410001701092
- Langley, J. K., 10.2996/kmj/1138037272, Kodai Math. J. 9, 3 (1986), 430–439. (1986) Zbl0609.34041MR0856690DOI10.2996/kmj/1138037272
- Levin, B. Ya., Lectures on entire functions, American Mathematical Society, Providence, RI, 1996 Translations of Mathematical Monographs, Vol. 150. (1996) Zbl0856.30001MR1400006
- Liu, M. S., Zhang, X. M., Fixed points of meromorphic solutions of higher order Linear differential equations, Ann. Acad. Sci. Fenn. Math. 31, 1 (2006), 191–211. (2006) Zbl1094.30036MR2210116
- Nevanlinna, R., Eindeutige analytische Funktionen, Die Grundlehren der mathematischen Wissenschaften Band 46, Zweite Auflage, Reprint, Springer-Verlag, Berlin–New York, 1974. (1974) Zbl0278.30002MR0344426
- Ozawa, M., 10.2996/kmj/1138036197, Kodai Math. J. 3, 2 (1980), 295–309. (1980) MR0588459DOI10.2996/kmj/1138036197
- Wang, J., Yi, H. X., 10.1080/0278107021000037048, Complex Var. Theory Appl. 48, 1 (2003), 83–94. (2003) Zbl1071.30029MR1953763DOI10.1080/0278107021000037048
- Wang, J., Laine, I., 10.1016/j.jmaa.2007.11.022, J. Math. Anal. Appl. 342, 1 (2008), 39–51. (2008) Zbl1151.34069MR2440778DOI10.1016/j.jmaa.2007.11.022
- Zhang, Q. T., Yang, C. C., The Fixed Points and Resolution Theory of Meromorphic Functions, Beijing University Press, Beijing, 1988 (in Chinese). (1988)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.