Some notes on embedding for anisotropic Sobolev spaces
Czechoslovak Mathematical Journal (2011)
- Volume: 61, Issue: 1, page 97-111
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLi, Hongliang, and Sun, Quinxiu. "Some notes on embedding for anisotropic Sobolev spaces." Czechoslovak Mathematical Journal 61.1 (2011): 97-111. <http://eudml.org/doc/196962>.
@article{Li2011,
abstract = {In this paper, we prove new embedding theorems for generalized anisotropic Sobolev spaces, $W_\{\Lambda ^\{p,q\}(w)\}^\{r_1,\dots ,r_n\}$ and $W_\{X\}^\{r_1,\dots ,r_n\}$, where $\Lambda ^\{p,q\}(w)$ is the weighted Lorentz space and $X$ is a rearrangement invariant space in $\mathbb \{R\}^n$. The main methods used in the paper are based on some estimates of nonincreasing rearrangements and the applications of $B_p$ weights.},
author = {Li, Hongliang, Sun, Quinxiu},
journal = {Czechoslovak Mathematical Journal},
keywords = {Lorentz spaces; Sobolev spaces; Besov spaces; Sobolev embedding; rearrangement invariant spaces; Lorentz space; Sobolev space; Besov space; Sobolev embedding; rearrangement invariant space},
language = {eng},
number = {1},
pages = {97-111},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some notes on embedding for anisotropic Sobolev spaces},
url = {http://eudml.org/doc/196962},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Li, Hongliang
AU - Sun, Quinxiu
TI - Some notes on embedding for anisotropic Sobolev spaces
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 1
SP - 97
EP - 111
AB - In this paper, we prove new embedding theorems for generalized anisotropic Sobolev spaces, $W_{\Lambda ^{p,q}(w)}^{r_1,\dots ,r_n}$ and $W_{X}^{r_1,\dots ,r_n}$, where $\Lambda ^{p,q}(w)$ is the weighted Lorentz space and $X$ is a rearrangement invariant space in $\mathbb {R}^n$. The main methods used in the paper are based on some estimates of nonincreasing rearrangements and the applications of $B_p$ weights.
LA - eng
KW - Lorentz spaces; Sobolev spaces; Besov spaces; Sobolev embedding; rearrangement invariant spaces; Lorentz space; Sobolev space; Besov space; Sobolev embedding; rearrangement invariant space
UR - http://eudml.org/doc/196962
ER -
References
top- Bastero, J., Milman, M., Blasco, F. Ruiz, 10.1512/iumj.2003.52.2364, Indiana Univ. Math. J. 52 (2003), 1215-1230. (2003) MR2010324DOI10.1512/iumj.2003.52.2364
- Bennett, C., Sharpley, R., Interpolation of Operators. Pure and Applied Mathematics, Vol. 129, Academic Press Boston (1988). (1988) MR0928802
- Besov, O. V., Il'in, V. P., Nikol'skij, S. M., Integral Representation of Functions and Imbedding Theorems, Vol. 1-2, V. H. Winston/John Wiley & Sons Washington, D. C./New York-Toronto-London (1978). (1978)
- Boyd, D. W., 10.4153/CJM-1967-053-7, Can. J. Math. 19 (1967), 599-616. (1967) Zbl0147.11302MR0212512DOI10.4153/CJM-1967-053-7
- Carro, M. J., Raposo, J. A., Soria, J., Recent Developments in the Theory of Lorentz Spaces and Weighted Inequalities. Mem. Amer. Math. Soc. Vol. 877, (2007). (2007) MR2308059
- Kolyada, V. I., On an embedding of Sobolev spaces, Mat. Zametki 54 (1993), 48-71; English transl.: Math. Notes , (1993), 908-922. (1993) Zbl0821.46043MR1248284
- Kolyada, V. I., Rearrangement of functions and embedding of anisotropic spaces of Sobolev type, East J. Approx. 4 (1998), 111-199. (1998) Zbl0917.46019MR1638343
- Kolyada, V. I., Pérez, F. J., 10.1002/mana.200310152, Math. Nachr. 267 (2004), 46-64. (2004) MR2047384DOI10.1002/mana.200310152
- Kudryavtsev, L. D., Nikol'skij, S. M., Spaces of Differentiable Functions of Several Variables and Embedding Theorems. Current problems in mathematics. Fundamental directions, Russian Itogi nauki i Techniki, Akad. Nauk SSSR Moscow 26 (1988), 5-157. (1988) MR1178111
- Martín, J., 10.1016/j.jmaa.2008.02.028, J. Math. Anal. Appl. 344 (2008), 99-123. (2008) MR2416295DOI10.1016/j.jmaa.2008.02.028
- Milman, M., Pustylnik, E., 10.1142/S0219199704001380, Commun. Contemp. Math. 6 (2004), 495-511. (2004) Zbl1108.46029MR2068850DOI10.1142/S0219199704001380
- Nikol'skij, S. M., Approximation of Functions of Several Variables and Imbedding Theorems, Springer Berlin-Heidelberg-New York (1975). (1975) Zbl0307.46024
- Lázaro, F. J. Pérez, 10.1016/j.jmaa.2005.07.019, J. Math. Anal. Appl. 320 (2006), 973-982. (2006) MR2226008DOI10.1016/j.jmaa.2005.07.019
- Lázaro, F. J. Pérez, 10.1007/s10474-007-6235-y, Acta Math. Hung. 119 (2008), 25-40. (2008) MR2400793DOI10.1007/s10474-007-6235-y
- Sobolev, S. L., On the theorem of functional analysis, Mat. Sb. 4(46) (1938), 471-497. (1938)
- Soria, J., 10.1093/qmathj/49.1.93, Quart. J. Math. Oxf., II. Ser. 49 (1998), 93-103. (1998) Zbl0943.42010MR1617343DOI10.1093/qmathj/49.1.93
- Triebel, H., Theory of Function Spaces, Birkhäuser Basel (1983). (1983) Zbl0546.46028MR0781540
- Triebel, H., Theory of Function Spaces II, Birkhäuser Basel (1992). (1992) Zbl0763.46025MR1163193
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.