Some notes on embedding for anisotropic Sobolev spaces

Hongliang Li; Quinxiu Sun

Czechoslovak Mathematical Journal (2011)

  • Volume: 61, Issue: 1, page 97-111
  • ISSN: 0011-4642

Abstract

top
In this paper, we prove new embedding theorems for generalized anisotropic Sobolev spaces, W Λ p , q ( w ) r 1 , , r n and W X r 1 , , r n , where Λ p , q ( w ) is the weighted Lorentz space and X is a rearrangement invariant space in n . The main methods used in the paper are based on some estimates of nonincreasing rearrangements and the applications of B p weights.

How to cite

top

Li, Hongliang, and Sun, Quinxiu. "Some notes on embedding for anisotropic Sobolev spaces." Czechoslovak Mathematical Journal 61.1 (2011): 97-111. <http://eudml.org/doc/196962>.

@article{Li2011,
abstract = {In this paper, we prove new embedding theorems for generalized anisotropic Sobolev spaces, $W_\{\Lambda ^\{p,q\}(w)\}^\{r_1,\dots ,r_n\}$ and $W_\{X\}^\{r_1,\dots ,r_n\}$, where $\Lambda ^\{p,q\}(w)$ is the weighted Lorentz space and $X$ is a rearrangement invariant space in $\mathbb \{R\}^n$. The main methods used in the paper are based on some estimates of nonincreasing rearrangements and the applications of $B_p$ weights.},
author = {Li, Hongliang, Sun, Quinxiu},
journal = {Czechoslovak Mathematical Journal},
keywords = {Lorentz spaces; Sobolev spaces; Besov spaces; Sobolev embedding; rearrangement invariant spaces; Lorentz space; Sobolev space; Besov space; Sobolev embedding; rearrangement invariant space},
language = {eng},
number = {1},
pages = {97-111},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some notes on embedding for anisotropic Sobolev spaces},
url = {http://eudml.org/doc/196962},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Li, Hongliang
AU - Sun, Quinxiu
TI - Some notes on embedding for anisotropic Sobolev spaces
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 1
SP - 97
EP - 111
AB - In this paper, we prove new embedding theorems for generalized anisotropic Sobolev spaces, $W_{\Lambda ^{p,q}(w)}^{r_1,\dots ,r_n}$ and $W_{X}^{r_1,\dots ,r_n}$, where $\Lambda ^{p,q}(w)$ is the weighted Lorentz space and $X$ is a rearrangement invariant space in $\mathbb {R}^n$. The main methods used in the paper are based on some estimates of nonincreasing rearrangements and the applications of $B_p$ weights.
LA - eng
KW - Lorentz spaces; Sobolev spaces; Besov spaces; Sobolev embedding; rearrangement invariant spaces; Lorentz space; Sobolev space; Besov space; Sobolev embedding; rearrangement invariant space
UR - http://eudml.org/doc/196962
ER -

References

top
  1. Bastero, J., Milman, M., Blasco, F. Ruiz, 10.1512/iumj.2003.52.2364, Indiana Univ. Math. J. 52 (2003), 1215-1230. (2003) MR2010324DOI10.1512/iumj.2003.52.2364
  2. Bennett, C., Sharpley, R., Interpolation of Operators. Pure and Applied Mathematics, Vol. 129, Academic Press Boston (1988). (1988) MR0928802
  3. Besov, O. V., Il'in, V. P., Nikol'skij, S. M., Integral Representation of Functions and Imbedding Theorems, Vol. 1-2, V. H. Winston/John Wiley &amp; Sons Washington, D. C./New York-Toronto-London (1978). (1978) 
  4. Boyd, D. W., 10.4153/CJM-1967-053-7, Can. J. Math. 19 (1967), 599-616. (1967) Zbl0147.11302MR0212512DOI10.4153/CJM-1967-053-7
  5. Carro, M. J., Raposo, J. A., Soria, J., Recent Developments in the Theory of Lorentz Spaces and Weighted Inequalities. Mem. Amer. Math. Soc. Vol. 877, (2007). (2007) MR2308059
  6. Kolyada, V. I., On an embedding of Sobolev spaces, Mat. Zametki 54 (1993), 48-71; English transl.: Math. Notes , (1993), 908-922. (1993) Zbl0821.46043MR1248284
  7. Kolyada, V. I., Rearrangement of functions and embedding of anisotropic spaces of Sobolev type, East J. Approx. 4 (1998), 111-199. (1998) Zbl0917.46019MR1638343
  8. Kolyada, V. I., Pérez, F. J., 10.1002/mana.200310152, Math. Nachr. 267 (2004), 46-64. (2004) MR2047384DOI10.1002/mana.200310152
  9. Kudryavtsev, L. D., Nikol'skij, S. M., Spaces of Differentiable Functions of Several Variables and Embedding Theorems. Current problems in mathematics. Fundamental directions, Russian Itogi nauki i Techniki, Akad. Nauk SSSR Moscow 26 (1988), 5-157. (1988) MR1178111
  10. Martín, J., 10.1016/j.jmaa.2008.02.028, J. Math. Anal. Appl. 344 (2008), 99-123. (2008) MR2416295DOI10.1016/j.jmaa.2008.02.028
  11. Milman, M., Pustylnik, E., 10.1142/S0219199704001380, Commun. Contemp. Math. 6 (2004), 495-511. (2004) Zbl1108.46029MR2068850DOI10.1142/S0219199704001380
  12. Nikol'skij, S. M., Approximation of Functions of Several Variables and Imbedding Theorems, Springer Berlin-Heidelberg-New York (1975). (1975) Zbl0307.46024
  13. Lázaro, F. J. Pérez, 10.1016/j.jmaa.2005.07.019, J. Math. Anal. Appl. 320 (2006), 973-982. (2006) MR2226008DOI10.1016/j.jmaa.2005.07.019
  14. Lázaro, F. J. Pérez, 10.1007/s10474-007-6235-y, Acta Math. Hung. 119 (2008), 25-40. (2008) MR2400793DOI10.1007/s10474-007-6235-y
  15. Sobolev, S. L., On the theorem of functional analysis, Mat. Sb. 4(46) (1938), 471-497. (1938) 
  16. Soria, J., 10.1093/qmathj/49.1.93, Quart. J. Math. Oxf., II. Ser. 49 (1998), 93-103. (1998) Zbl0943.42010MR1617343DOI10.1093/qmathj/49.1.93
  17. Triebel, H., Theory of Function Spaces, Birkhäuser Basel (1983). (1983) Zbl0546.46028MR0781540
  18. Triebel, H., Theory of Function Spaces II, Birkhäuser Basel (1992). (1992) Zbl0763.46025MR1163193

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.