Stochastic fuzzy differential equations with an application
Marek T. Malinowski; Mariusz Michta
Kybernetika (2011)
- Volume: 47, Issue: 1, page 123-143
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topMalinowski, Marek T., and Michta, Mariusz. "Stochastic fuzzy differential equations with an application." Kybernetika 47.1 (2011): 123-143. <http://eudml.org/doc/196974>.
@article{Malinowski2011,
abstract = {In this paper we present the existence and uniqueness of solutions to the stochastic fuzzy differential equations driven by Brownian motion. The continuous dependence on initial condition and stability properties are also established. As an example of application we use some stochastic fuzzy differential equation in a model of population dynamics.},
author = {Malinowski, Marek T., Michta, Mariusz},
journal = {Kybernetika},
keywords = {fuzzy random variable; fuzzy stochastic process; fuzzy stochastic Lebesgue–Aumann integral; fuzzy stochastic Itô integral; stochastic fuzzy differential equation; stochastic fuzzy integral equation; fuzzy random variable; fuzzy stochastic process; fuzzy stochastic Lebesgue–Aumann integral; fuzzy stochastic Itô integral; stochastic fuzzy differential equation; stochastic fuzzy integral equation},
language = {eng},
number = {1},
pages = {123-143},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Stochastic fuzzy differential equations with an application},
url = {http://eudml.org/doc/196974},
volume = {47},
year = {2011},
}
TY - JOUR
AU - Malinowski, Marek T.
AU - Michta, Mariusz
TI - Stochastic fuzzy differential equations with an application
JO - Kybernetika
PY - 2011
PB - Institute of Information Theory and Automation AS CR
VL - 47
IS - 1
SP - 123
EP - 143
AB - In this paper we present the existence and uniqueness of solutions to the stochastic fuzzy differential equations driven by Brownian motion. The continuous dependence on initial condition and stability properties are also established. As an example of application we use some stochastic fuzzy differential equation in a model of population dynamics.
LA - eng
KW - fuzzy random variable; fuzzy stochastic process; fuzzy stochastic Lebesgue–Aumann integral; fuzzy stochastic Itô integral; stochastic fuzzy differential equation; stochastic fuzzy integral equation; fuzzy random variable; fuzzy stochastic process; fuzzy stochastic Lebesgue–Aumann integral; fuzzy stochastic Itô integral; stochastic fuzzy differential equation; stochastic fuzzy integral equation
UR - http://eudml.org/doc/196974
ER -
References
top- Aumann, R. J., 10.1016/0022-247X(65)90049-1, J. Math. Anal. Appl. 12 (1965), 1–12. (1965) Zbl0163.06301MR0185073DOI10.1016/0022-247X(65)90049-1
- Colubi, A., Domínguez-Menchero, J. S., López-Díaz, M., Ralescu, D. A., 10.1090/S0002-9939-02-06429-8, Proc. Amer. Math. Soc. 130 (2002) 3237–3242. (2002) Zbl1005.28003MR1913001DOI10.1090/S0002-9939-02-06429-8
- Diamond, P., Kloeden, P., Metric Spaces of Fuzzy Sets: Theory and Applications, World Scientific, Singapore 1994. (1994) Zbl0873.54019MR1337027
- Fei, W., 10.1016/j.ins.2007.03.004, Inform. Sci. 177 (2007) 4329–4337. (2007) Zbl1129.60063MR2349040DOI10.1016/j.ins.2007.03.004
- Feng, Y., Fuzzy stochastic differential systems, Fuzzy Sets Syst. 115 (2000), 351–363. (2000) Zbl0964.60068MR1781454
- Hiai, F., Umegaki, H., 10.1016/0047-259X(77)90037-9, J. Multivar. Anal. 7 (1977), 149–182. (1977) MR0507504DOI10.1016/0047-259X(77)90037-9
- Hu, S., Papageorgiou, N., Handbook of Multivalued Analysis, Volume I: Theory, Kluwer Academic Publishers, Boston 1997. (1997) Zbl0887.47001MR1485775
- Kaleva, O., Fuzzy differential equations, Fuzzy Sets Syst. 24 (1987), 301–317. (1987) Zbl0646.34019MR0919058
- Kim, J. H., 10.4134/JKMS.2005.42.1.153, J. Korean Math. Soc. 42 (2005), 153–169. (2005) Zbl1071.60060MR2106287DOI10.4134/JKMS.2005.42.1.153
- Kisielewicz, M., Differential Inclusions and Optimal Control, Kluwer Academic Publishers, Dordrecht 1991. (1991) MR1135796
- Lakshmikantham, V., Mohapatra, R. N., Theory of Fuzzy Differential Equations and Inclusions, Taylor & Francis, London 2003. (2003) Zbl1072.34001MR2052737
- Li, Sh., Ren, A., Representation theorems, set-valued and fuzzy set-valued Itô integral, Fuzzy Sets Syst. 158 (2007), 949–962. (2007) Zbl1119.60039MR2321701
- Malinowski, M.,T., On random fuzzy differential equations, Fuzzy Sets Syst. 160 (2009), 3152–3165. (2009) Zbl1184.34011MR2567099
- Negoita, C. V., Ralescu, D. A., Applications of Fuzzy Sets to System Analysis, Wiley, New York 1975. (1975) MR0490082
- Ogura, Y., On stochastic differential equations with fuzzy set coefficients, In: Soft Methods for Handling Variability and Imprecision (D. Dubois et al., eds.), Springer, Berlin 2008, pp. 263–270. (2008)
- Øksendal, B., Stochastic Differential Equations: An Introduction with Applications, Springer Verlag, Berlin 2003. (2003) Zbl1025.60026MR0804391
- Protter, Ph., Stochastic Integration and Differential Equations: A New Approach, Springer Verlag, New York 1990. (1990) Zbl0694.60047MR1037262
- Puri, M. L., Ralescu, D. A., 10.1016/0022-247X(83)90169-5, J. Math. Anal. Appl. 91 (1983), 552–558. (1983) Zbl0528.54009MR0690888DOI10.1016/0022-247X(83)90169-5
- Puri, M. L., Ralescu, D. A., 10.1016/0022-247X(86)90093-4, J. Math. Anal. Appl. 114 (1986), 409–422. (1986) Zbl0605.60038MR0833596DOI10.1016/0022-247X(86)90093-4
- Stojaković, M., Fuzzy conditional expectation, Fuzzy Sets Syst. 52 (1992), 53–60. (1992) MR1195201
- Zhang, J., Set-valued stochastic integrals with respect to a real valued martingale, In: Soft Methods for Handling Variability and Imprecision (D. Dubois et al., eds.), Springer, Berlin 2008, pp. 253–259. (2008)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.