Continuous dependence on parameters of certain self-affine measures, and their singularity
Czechoslovak Mathematical Journal (2011)
- Volume: 61, Issue: 2, page 495-508
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topDing, Daoxin. "Continuous dependence on parameters of certain self-affine measures, and their singularity." Czechoslovak Mathematical Journal 61.2 (2011): 495-508. <http://eudml.org/doc/196983>.
@article{Ding2011,
abstract = {In this paper, we first prove that the self-affine sets depend continuously on the expanding matrix and the digit set, and the corresponding self-affine measures with respect to the probability weight behave in much the same way. Moreover, we obtain some sufficient conditions for certain self-affine measures to be singular.},
author = {Ding, Daoxin},
journal = {Czechoslovak Mathematical Journal},
keywords = {iterated function system; self-affine set; self-affine measure; singularity; iterated function system; self-affine set; self-affine measure; singularity},
language = {eng},
number = {2},
pages = {495-508},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Continuous dependence on parameters of certain self-affine measures, and their singularity},
url = {http://eudml.org/doc/196983},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Ding, Daoxin
TI - Continuous dependence on parameters of certain self-affine measures, and their singularity
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 2
SP - 495
EP - 508
AB - In this paper, we first prove that the self-affine sets depend continuously on the expanding matrix and the digit set, and the corresponding self-affine measures with respect to the probability weight behave in much the same way. Moreover, we obtain some sufficient conditions for certain self-affine measures to be singular.
LA - eng
KW - iterated function system; self-affine set; self-affine measure; singularity; iterated function system; self-affine set; self-affine measure; singularity
UR - http://eudml.org/doc/196983
ER -
References
top- Erdős, P., 10.2307/2371641, Amer. J. Math. 61 (1939), 974-976. (1939) MR0000311DOI10.2307/2371641
- Falconer, K. J., The Geometry of Fractal Sets, Cambridge University Press Cambridge (1985). (1985) Zbl0587.28004MR0867284
- Falconer, K. J., Fractal Geometry: Mathematical Foundations and Applications, John Wiley & Sons Chichester (1990). (1990) Zbl0689.28003MR1102677
- Falconer, K. J., Techniques in Fractal Geometry, John Wiley & Sons Chichester (1997). (1997) Zbl0869.28003MR1449135
- Feng, D.-J., Wang, Y., 10.1016/j.aim.2003.05.002, Adv. Math. 187 (2004), 173-194. (2004) Zbl1047.60044MR2074175DOI10.1016/j.aim.2003.05.002
- Garsia, A. M., 10.1090/S0002-9947-1962-0137961-5, Trans. Am. Math. Soc. 102 (1962), 409-432. (1962) Zbl0103.36502MR0137961DOI10.1090/S0002-9947-1962-0137961-5
- Hu, T.-Y., 10.1090/S0002-9939-00-05709-9, Proc. Am. Math. Soc. 129 (2001), 1713-1720. (2001) Zbl0965.28002MR1814101DOI10.1090/S0002-9939-00-05709-9
- Hutchinson, J. E., 10.1512/iumj.1981.30.30055, Indiana Univ. Math. J. 30 (1981), 713-747. (1981) MR0625600DOI10.1512/iumj.1981.30.30055
- Jorgensen, P. E. T., Kornelson, K. A., Shuman, K. L., 10.1007/s10440-007-9156-4, Acta Appl. Math. 98 (2007), 181-222. (2007) Zbl1149.28004MR2338387DOI10.1007/s10440-007-9156-4
- Lau, K.-S., Ngai, S.-M., Rao, H., 10.1112/S0024610700001654, J. Lond. Math. Soc., II. Ser. 63 (2001), 99-116. (2001) Zbl1019.28005MR1802760DOI10.1112/S0024610700001654
- Li, J.-L., 10.1016/j.jmaa.2008.05.083, J. Math. Anal. Appl. 347 (2008), 375-380. (2008) Zbl1153.28303MR2440333DOI10.1016/j.jmaa.2008.05.083
- Niu, M., Xi, L.-F., 10.1016/j.chaos.2006.03.029, Chaos Solitons Fractals 34 (2007), 376-382. (2007) Zbl1134.28009MR2327412DOI10.1016/j.chaos.2006.03.029
- Peres, Y., Schlag, W., Solomyak, B., Sixty years of Bernoulli convolutions, Fractal Geometry and Stochastics, II. Proc. 2nd Conf. (Greifswald/Koserow, Germany, 1998) Birkhäuser Basel (2000), Prog. Probab. 46 (2000), 39-65. (2000) Zbl0961.42006MR1785620
- Salem, R., Algebraic Numbers and Fourier Analysis, D. C. Heath and Company Boston (1963). (1963) Zbl0126.07802MR0157941
- Strichartz, R. S., 10.1007/s00041-001-4001-z, J. Fourier Anal. Appl. 1 (1994), 1-37. (1994) Zbl0851.42001MR1307067DOI10.1007/s00041-001-4001-z
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.