Continuous dependence on parameters of certain self-affine measures, and their singularity

Daoxin Ding

Czechoslovak Mathematical Journal (2011)

  • Volume: 61, Issue: 2, page 495-508
  • ISSN: 0011-4642

Abstract

top
In this paper, we first prove that the self-affine sets depend continuously on the expanding matrix and the digit set, and the corresponding self-affine measures with respect to the probability weight behave in much the same way. Moreover, we obtain some sufficient conditions for certain self-affine measures to be singular.

How to cite

top

Ding, Daoxin. "Continuous dependence on parameters of certain self-affine measures, and their singularity." Czechoslovak Mathematical Journal 61.2 (2011): 495-508. <http://eudml.org/doc/196983>.

@article{Ding2011,
abstract = {In this paper, we first prove that the self-affine sets depend continuously on the expanding matrix and the digit set, and the corresponding self-affine measures with respect to the probability weight behave in much the same way. Moreover, we obtain some sufficient conditions for certain self-affine measures to be singular.},
author = {Ding, Daoxin},
journal = {Czechoslovak Mathematical Journal},
keywords = {iterated function system; self-affine set; self-affine measure; singularity; iterated function system; self-affine set; self-affine measure; singularity},
language = {eng},
number = {2},
pages = {495-508},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Continuous dependence on parameters of certain self-affine measures, and their singularity},
url = {http://eudml.org/doc/196983},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Ding, Daoxin
TI - Continuous dependence on parameters of certain self-affine measures, and their singularity
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 2
SP - 495
EP - 508
AB - In this paper, we first prove that the self-affine sets depend continuously on the expanding matrix and the digit set, and the corresponding self-affine measures with respect to the probability weight behave in much the same way. Moreover, we obtain some sufficient conditions for certain self-affine measures to be singular.
LA - eng
KW - iterated function system; self-affine set; self-affine measure; singularity; iterated function system; self-affine set; self-affine measure; singularity
UR - http://eudml.org/doc/196983
ER -

References

top
  1. Erdős, P., 10.2307/2371641, Amer. J. Math. 61 (1939), 974-976. (1939) MR0000311DOI10.2307/2371641
  2. Falconer, K. J., The Geometry of Fractal Sets, Cambridge University Press Cambridge (1985). (1985) Zbl0587.28004MR0867284
  3. Falconer, K. J., Fractal Geometry: Mathematical Foundations and Applications, John Wiley &amp; Sons Chichester (1990). (1990) Zbl0689.28003MR1102677
  4. Falconer, K. J., Techniques in Fractal Geometry, John Wiley &amp; Sons Chichester (1997). (1997) Zbl0869.28003MR1449135
  5. Feng, D.-J., Wang, Y., 10.1016/j.aim.2003.05.002, Adv. Math. 187 (2004), 173-194. (2004) Zbl1047.60044MR2074175DOI10.1016/j.aim.2003.05.002
  6. Garsia, A. M., 10.1090/S0002-9947-1962-0137961-5, Trans. Am. Math. Soc. 102 (1962), 409-432. (1962) Zbl0103.36502MR0137961DOI10.1090/S0002-9947-1962-0137961-5
  7. Hu, T.-Y., 10.1090/S0002-9939-00-05709-9, Proc. Am. Math. Soc. 129 (2001), 1713-1720. (2001) Zbl0965.28002MR1814101DOI10.1090/S0002-9939-00-05709-9
  8. Hutchinson, J. E., 10.1512/iumj.1981.30.30055, Indiana Univ. Math. J. 30 (1981), 713-747. (1981) MR0625600DOI10.1512/iumj.1981.30.30055
  9. Jorgensen, P. E. T., Kornelson, K. A., Shuman, K. L., 10.1007/s10440-007-9156-4, Acta Appl. Math. 98 (2007), 181-222. (2007) Zbl1149.28004MR2338387DOI10.1007/s10440-007-9156-4
  10. Lau, K.-S., Ngai, S.-M., Rao, H., 10.1112/S0024610700001654, J. Lond. Math. Soc., II. Ser. 63 (2001), 99-116. (2001) Zbl1019.28005MR1802760DOI10.1112/S0024610700001654
  11. Li, J.-L., 10.1016/j.jmaa.2008.05.083, J. Math. Anal. Appl. 347 (2008), 375-380. (2008) Zbl1153.28303MR2440333DOI10.1016/j.jmaa.2008.05.083
  12. Niu, M., Xi, L.-F., 10.1016/j.chaos.2006.03.029, Chaos Solitons Fractals 34 (2007), 376-382. (2007) Zbl1134.28009MR2327412DOI10.1016/j.chaos.2006.03.029
  13. Peres, Y., Schlag, W., Solomyak, B., Sixty years of Bernoulli convolutions, Fractal Geometry and Stochastics, II. Proc. 2nd Conf. (Greifswald/Koserow, Germany, 1998) Birkhäuser Basel (2000), Prog. Probab. 46 (2000), 39-65. (2000) Zbl0961.42006MR1785620
  14. Salem, R., Algebraic Numbers and Fourier Analysis, D. C. Heath and Company Boston (1963). (1963) Zbl0126.07802MR0157941
  15. Strichartz, R. S., 10.1007/s00041-001-4001-z, J. Fourier Anal. Appl. 1 (1994), 1-37. (1994) Zbl0851.42001MR1307067DOI10.1007/s00041-001-4001-z

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.