On the compound Poisson-gamma distribution

Christopher Withers; Saralees Nadarajah

Kybernetika (2011)

  • Volume: 47, Issue: 1, page 15-37
  • ISSN: 0023-5954

Abstract

top
The compound Poisson-gamma variable is the sum of a random sample from a gamma distribution with sample size an independent Poisson random variable. It has received wide ranging applications. In this note, we give an account of its mathematical properties including estimation procedures by the methods of moments and maximum likelihood. Most of the properties given are hitherto unknown.

How to cite

top

Withers, Christopher, and Nadarajah, Saralees. "On the compound Poisson-gamma distribution." Kybernetika 47.1 (2011): 15-37. <http://eudml.org/doc/197008>.

@article{Withers2011,
abstract = {The compound Poisson-gamma variable is the sum of a random sample from a gamma distribution with sample size an independent Poisson random variable. It has received wide ranging applications. In this note, we give an account of its mathematical properties including estimation procedures by the methods of moments and maximum likelihood. Most of the properties given are hitherto unknown.},
author = {Withers, Christopher, Nadarajah, Saralees},
journal = {Kybernetika},
keywords = {compound Poisson-gamma; estimation; expansions; moments; compound Poisson-gamma; estimation; expansions; moments},
language = {eng},
number = {1},
pages = {15-37},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On the compound Poisson-gamma distribution},
url = {http://eudml.org/doc/197008},
volume = {47},
year = {2011},
}

TY - JOUR
AU - Withers, Christopher
AU - Nadarajah, Saralees
TI - On the compound Poisson-gamma distribution
JO - Kybernetika
PY - 2011
PB - Institute of Information Theory and Automation AS CR
VL - 47
IS - 1
SP - 15
EP - 37
AB - The compound Poisson-gamma variable is the sum of a random sample from a gamma distribution with sample size an independent Poisson random variable. It has received wide ranging applications. In this note, we give an account of its mathematical properties including estimation procedures by the methods of moments and maximum likelihood. Most of the properties given are hitherto unknown.
LA - eng
KW - compound Poisson-gamma; estimation; expansions; moments; compound Poisson-gamma; estimation; expansions; moments
UR - http://eudml.org/doc/197008
ER -

References

top
  1. Buishand, T. A., Stochastic Modelling of Daily Rainfall Sequences, Wageningen, Netherlands, Mededelingen Landbouwhogeschool 1977. (1977) 
  2. Choo, L., Walker, S. G., 10.1111/j.1467-985X.2007.00503.x, J. Roy. Statist. Soc. A 171 (2008), 395–405. (2008) MR2427340DOI10.1111/j.1467-985X.2007.00503.x
  3. Christensen, A., Melgaard, H., Iwersen, J., Environmental monitoring based on a hierarchical Poisson-gamma model, J. Quality Technology 35 (2003), 275–285. (2003) 
  4. Comtet, L., Advanced Combinatorics, Reidel Publishing Company, Dordrecht 1974. (1974) Zbl0283.05001MR0460128
  5. Fisher, R. A., Cornish, E. A., 10.1080/00401706.1960.10489895, Technometrics 2 (1960), 209–225. (1960) Zbl0095.13704DOI10.1080/00401706.1960.10489895
  6. Fukasawa, T., Basawa, I. V., 10.1016/S0167-7152(02)00325-5, Statist. Probab. Lett. 60 (2002), 459–473. (2002) Zbl1056.62098MR1947185DOI10.1016/S0167-7152(02)00325-5
  7. Galue, L., A generalized hyper Poisson-gamma distribution associated with the H -function, Hadronic J. 30 (2007), 63–79. (2007) Zbl1137.62004MR2356751
  8. Gradshteyn, I. S., Ryzhik, I. M., Tables of Integrals, Series and Products, Fourth edition. Academic Press, New York 1965. (1965) 
  9. Hadjicostas, P., Berry, S. M., 10.1007/BF02595867, Test 8 (1999), 147–166. (1999) Zbl0945.62032MR1707655DOI10.1007/BF02595867
  10. Henderson, R., Shimakura, S., 10.1093/biomet/90.2.355, Biometrika 90 (2003), 355–366. (2003) Zbl1034.62115MR1986652DOI10.1093/biomet/90.2.355
  11. Kendall, M., Stuart, A., The Advanced Theory of Statistics, Volume 1. MacMillan, New York 1977. (1977) Zbl0353.62013MR0467977
  12. Cam, L. Le, A stochastic description of precipitation, In: Proc. Fourth Berkeley Symposium on Mathematical Statistics and Probability (J. Neyman, ed.), University of California Press, Berkeley 1961, volume 3, pp. 165–186. (1961) Zbl0122.37005MR0135598
  13. Nahmias, S., Demmy, W. S., 10.1002/nav.3800290413, Naval Research Logistics 29 (1982), 667–677. (1982) Zbl0538.90022DOI10.1002/nav.3800290413
  14. Ozturk, A., 10.1175/1520-0450(1981)020<1499:OTSOAP>2.0.CO;2, J. Appl. Meteorology 20 (1981), 1499–1505. (1981) DOI10.1175/1520-0450(1981)020<1499:OTSOAP>2.0.CO;2
  15. Revfeim, K. J. A., Comments “On the study of a probability distribution for precipitation totals”, J. Appl. Meteology 21 (1982), 97–100. (1982) 
  16. Revfeim, K. J. A., 10.1002/joc.3370100607, Internat. J. Climatology 10 (1990), 647–650. (1990) DOI10.1002/joc.3370100607
  17. Withers, C. S., Asymptotic expansions for distributions and quantiles with power series cumulants, J. Roy. Statist. Soc. B 46 (1984), 389–396. (1984) Zbl0586.62026MR0790623
  18. Withers, C. S., Nadarajah, S., Saddlepoint Expansions in Terms of Bell Polynomials, Technical Report, Applied Mathematics Group, Industrial Research Ltd., Lower Hutt, New Zealand 2010. Avaiable on-line at http://arxiv.org/. (2010) 
  19. Xia, N., Zhang, Z.-Z., Ying, Z.-L., 10.1007/s10255-006-0338-z, Acta Math. Appl. Sinica 22 (2006), 639–654. (2006) Zbl1104.62082MR2248528DOI10.1007/s10255-006-0338-z

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.