Subordination results for some subclasses of analytic functions

R. M. El-Ashwah; M. K. Aouf; A. Shamandy; E. E. Ali

Mathematica Bohemica (2011)

  • Volume: 136, Issue: 3, page 311-331
  • ISSN: 0862-7959

Abstract

top
We introduce two classes of analytic functions related to conic domains, using a new linear multiplier Dziok-Srivastava operator D λ , n . q , s ( n 0 = { 0 , 1 , } , q s + 1 ; q , s 0 , 0 α < 1 , λ 0 , 0 ) . Basic properties of these classes are studied, such as coefficient bounds. Various known or new special cases of our results are also pointed out. For these new function classes, we establish subordination theorems and also deduce some corollaries of these results.

How to cite

top

El-Ashwah, R. M., et al. "Subordination results for some subclasses of analytic functions." Mathematica Bohemica 136.3 (2011): 311-331. <http://eudml.org/doc/197015>.

@article{El2011,
abstract = {We introduce two classes of analytic functions related to conic domains, using a new linear multiplier Dziok-Srivastava operator $D_\{\lambda ,\ell \}^\{n.q,s\}$$(n\in \mathbb \{N\}_\{0\}=\lbrace 0,1,\dots \rbrace $, $q\le s+1$; $q, s\in \mathbb \{N\}_\{0\}$, $0\le \alpha <1$, $\lambda \ge 0$, $\ell \ge 0).$ Basic properties of these classes are studied, such as coefficient bounds. Various known or new special cases of our results are also pointed out. For these new function classes, we establish subordination theorems and also deduce some corollaries of these results.},
author = {El-Ashwah, R. M., Aouf, M. K., Shamandy, A., Ali, E. E.},
journal = {Mathematica Bohemica},
keywords = {uniformly convex function; subordination; conic domain; Hadamard product; uniformly convex function; subordination; conic domain; Hadamard product},
language = {eng},
number = {3},
pages = {311-331},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Subordination results for some subclasses of analytic functions},
url = {http://eudml.org/doc/197015},
volume = {136},
year = {2011},
}

TY - JOUR
AU - El-Ashwah, R. M.
AU - Aouf, M. K.
AU - Shamandy, A.
AU - Ali, E. E.
TI - Subordination results for some subclasses of analytic functions
JO - Mathematica Bohemica
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 136
IS - 3
SP - 311
EP - 331
AB - We introduce two classes of analytic functions related to conic domains, using a new linear multiplier Dziok-Srivastava operator $D_{\lambda ,\ell }^{n.q,s}$$(n\in \mathbb {N}_{0}=\lbrace 0,1,\dots \rbrace $, $q\le s+1$; $q, s\in \mathbb {N}_{0}$, $0\le \alpha <1$, $\lambda \ge 0$, $\ell \ge 0).$ Basic properties of these classes are studied, such as coefficient bounds. Various known or new special cases of our results are also pointed out. For these new function classes, we establish subordination theorems and also deduce some corollaries of these results.
LA - eng
KW - uniformly convex function; subordination; conic domain; Hadamard product; uniformly convex function; subordination; conic domain; Hadamard product
UR - http://eudml.org/doc/197015
ER -

References

top
  1. Aghalary, R., Azadi, Gh., The Dziok-Srivastava operator and k-uniformly starlike functions, J. Inequal. Pure Appl. Math. 6 (2005), 1-7. (2005) Zbl1089.30009MR2150906
  2. Al-Oboudi, F. M., 10.1155/S0161171204108090, Internat. J. Math. Math Sci. 27 (2004), 1429-1436. (2004) Zbl1072.30009MR2085011DOI10.1155/S0161171204108090
  3. Al-Oboudi, F. M., Al-Amoudi, K. A., 10.1016/j.jmaa.2007.05.087, J. Math. Anal. Appl. 339 (2008), 655-667. (2008) MR2370683DOI10.1016/j.jmaa.2007.05.087
  4. Aouf, M. K., Mostafa, A. O., Some properties of a subclass of uniformly convex functions with negative coefficients, Demonstratio Mathematica 61 (2008), 353-370. (2008) Zbl1159.30307MR2419912
  5. Aouf, M. K., Mostafa, A. M., 10.1007/s00013-009-2984-x, Arch. Math. 92 (2009), 279-286. (2009) Zbl1165.30313MR2496680DOI10.1007/s00013-009-2984-x
  6. Aouf, M. K., Murugusundarmoorthy, G., On a subclass of uniformly convex functions defined by the Dziok-Srivastava operator, Austral. J. Math. Anal. Appl. 5 (2008), 1-17. (2008) MR2383651
  7. Attiya, A. A., 10.1016/j.jmaa.2005.02.056, J. Math. Anal. Appl. 311 (2005), 489-494. (2005) MR2168412DOI10.1016/j.jmaa.2005.02.056
  8. Bulboaca, T., Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca (2005). (2005) 
  9. Bernardi, S. D., 10.1090/S0002-9947-1969-0232920-2, Trans. Amer. Math. Soc. 135 (1969), 429-446. (1969) Zbl0172.09703MR0232920DOI10.1090/S0002-9947-1969-0232920-2
  10. Bharati, R., Parvatham, R., Swaminathan, A., On subclasses of uniformly cunvex functions and corresponding class of starlike functions, Tamkang J. Math. 28 (1997), 17-32. (1997) MR1457247
  11. Catas, A., On certain classes of p -valent functions defined by multiplier transformations, Proceedings of the International Symposium on Geometric Function Theory and Applications: GFTA 2007 Proceedings (İstanbul, Turkey; 20-24 August 2007) (S. Owa, Y. Polatoğlu, Eds.), pp. 241-250, TC İstanbul Kűltűr University Publications, Vol. 91, TC İstanbul Kűltűr University, İstanbul, Turkey (2008). (2008) 
  12. Choi, J. H., Saigo, M., Srivastava, H. M., 10.1016/S0022-247X(02)00500-0, J. Math. Anal. Appl. 276 (2002), 432-445. (2002) Zbl1035.30004MR1944360DOI10.1016/S0022-247X(02)00500-0
  13. Dziok, J., Srivastava, H. M., 10.1016/S0096-3003(98)10042-5, Applied Math. Comput. 103 (1999), 1-13. (1999) MR1686354DOI10.1016/S0096-3003(98)10042-5
  14. Frasin, B. A., Subordination results for a class of analytic functions defined by linear operator, J. Inequal. Pure. Appl. Math. 7 (2006), 1-7. (2006) MR2268588
  15. Goodmen, A. W., 10.4064/ap-56-1-87-92, Ann. Polon. Math. 56 (1991), 87-92. (1991) DOI10.4064/ap-56-1-87-92
  16. Kanas, S., Wisniowska, A., 10.1016/S0377-0427(99)00018-7, Comput. Appl. Math. 105 (1999), 327-336. (1999) Zbl0944.30008MR1690599DOI10.1016/S0377-0427(99)00018-7
  17. Kanas, S., Wisniowska, A., Conic domains and starlike functions, Rev. Roum. Math. Pures Appl. 45 (2000), 647-657. (2000) Zbl0990.30010MR1836295
  18. Kanas, S., Yuguchi, T., Subclasses of k-uniformly convex and starlike functions defined by generalized derivative II, Publ. Inst. Math. 69 (2001), 91-100. (2001) MR1847833
  19. Libera, R. J., 10.1090/S0002-9939-1965-0178131-2, Proc. Amer. Math. Soc. 16 (1965), 755-758. (1965) MR0178131DOI10.1090/S0002-9939-1965-0178131-2
  20. Livingston, A. E., 10.1090/S0002-9939-1966-0188423-X, Proc. Amer. Math. Soc. 17 (1966), 352-357. (1966) Zbl0158.07701MR0188423DOI10.1090/S0002-9939-1966-0188423-X
  21. Ma, W., Minda, D., 10.4064/ap-57-2-165-175, Ann. Polon. Math. 57 (1992), 165-175. (1992) Zbl0760.30004MR1182182DOI10.4064/ap-57-2-165-175
  22. Miller, S. S., Mocanu, P. T., 10.1307/mmj/1029002507, Michigan Math. J. 28 (1981), 157-171. (1981) Zbl0439.30015MR0616267DOI10.1307/mmj/1029002507
  23. Miller, S. S., Mocanu, P. T., Differential Subordinations: Theory and Applications, Series of Monographs and Texbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker, New York (2000). (2000) Zbl0954.34003MR1760285
  24. Murugusundaramoorthy, G., Magesh, N., A new subclass of uniformly convex functions and a corresponding subclass of starlike functions with fixed second coefficient, J. Inequal. Pure Appl. Math. 5 (2004), 1-20. (2004) Zbl1059.30010MR2112438
  25. Noor, K. I., Noor, M. A., 10.1006/jmaa.1999.6501, J. Math. Anal. Appl. 238 (1999), 341-352. (1999) Zbl0934.30007MR1715487DOI10.1006/jmaa.1999.6501
  26. Prajapat, J. K., Raina, R. K., Subordination theorem for a certain subclass of analytic functions involving a linear multiplier operator, Indian J. Math. 51 (2009), 267-276. (2009) Zbl1178.30017MR2537946
  27. Rogosinski, W., On the coefficients of subordinate functions, Proc. London Math. Soc. 48 (1943), 48-82. (1943) Zbl0028.35502MR0008625
  28. Ronning, F., On starlike functions associated with parabolic regions, Ann. Univ. Mariae Curie-Sklodowska Sect. A 45 (1991), 117-122. (1991) MR1322145
  29. Ronning, F., 10.1090/S0002-9939-1993-1128729-7, Proc. Amer. Math. Soc. 118 (1993), 189-196. (1993) MR1128729DOI10.1090/S0002-9939-1993-1128729-7
  30. Rosy, T., Murugsundarmoorthy, G., Fractional calculus and its applications to certain subclassof uniformly convex functions, Far East J. Math. Sci. 15 (2004), 231-242. (2004) MR2133425
  31. Rosy, T., Subramanian, K. G., Murugsundarmoorthy, G., Neighbourhoods and partial sums of starlike functions based on Ruscheweyh derivatives, J. Inequal. Pure. Appl. Math. 4 (2003), 1-19. (2003) MR2051565
  32. Salagean, G. S., Subclasses of univalent functions. Complex Analysis---Fifth Romanian-Finish Seminar, Part I, Bucharest, 1981. Lecture Notes in Math., Vol. 1013, Springer, Berlin, 1983, pp. 362-372, . MR0738107
  33. Singh, S., 10.1155/S0161171200004634, Internat. J. Math. Math. Sci. 24 (2000), 433-435. (2000) DOI10.1155/S0161171200004634
  34. Singh, S., 10.1155/S0161171200004634, Internat. J. Math. Math. Sci. 24 (2004), 433-435. (2004) MR1781509DOI10.1155/S0161171200004634
  35. Srivastava, H. M., Attiya, A. A., Some subordination result associated with certain subclasses of analytic functions, J. Inequal. Pure Appl. Math. 5 (2004), 1-6. (2004) MR2112435
  36. Srivastava, H. M., Karlsson, P. W., Multiple Gaussian Hypergeometric Series, Ellis Horwood Ltd., Chichester, Halsted Press (John Wiley &amp; Sons), New York (1985). (1985) Zbl0552.33001MR0834385
  37. Srivastava, H. M., Mishra, A. K., 10.1016/S0898-1221(99)00333-8, Comput. Math. Appl. 39 (2000), 57-69. (2000) Zbl0948.30018MR1740907DOI10.1016/S0898-1221(99)00333-8
  38. Srivastava, H. M., Li, Shu-Hai, Tang, H., Certain classes of k-uniformly close-to-convex functions and other related functions defined by using the Dziok-Srivastava operator, Bull. Math. Anal. Appl. 3 (2009), 49-63. (2009) MR2578116
  39. Wilf, H. S., 10.1090/S0002-9939-1961-0125214-5, Proc. Amer. Math. Soc. vol 12 (1961), 689-693. (1961) MR0125214DOI10.1090/S0002-9939-1961-0125214-5

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.