Subordination results for some subclasses of analytic functions
R. M. El-Ashwah; M. K. Aouf; A. Shamandy; E. E. Ali
Mathematica Bohemica (2011)
- Volume: 136, Issue: 3, page 311-331
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topEl-Ashwah, R. M., et al. "Subordination results for some subclasses of analytic functions." Mathematica Bohemica 136.3 (2011): 311-331. <http://eudml.org/doc/197015>.
@article{El2011,
abstract = {We introduce two classes of analytic functions related to conic domains, using a new linear multiplier Dziok-Srivastava operator $D_\{\lambda ,\ell \}^\{n.q,s\}$$(n\in \mathbb \{N\}_\{0\}=\lbrace 0,1,\dots \rbrace $, $q\le s+1$; $q, s\in \mathbb \{N\}_\{0\}$, $0\le \alpha <1$, $\lambda \ge 0$, $\ell \ge 0).$ Basic properties of these classes are studied, such as coefficient bounds. Various known or new special cases of our results are also pointed out. For these new function classes, we establish subordination theorems and also deduce some corollaries of these results.},
author = {El-Ashwah, R. M., Aouf, M. K., Shamandy, A., Ali, E. E.},
journal = {Mathematica Bohemica},
keywords = {uniformly convex function; subordination; conic domain; Hadamard product; uniformly convex function; subordination; conic domain; Hadamard product},
language = {eng},
number = {3},
pages = {311-331},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Subordination results for some subclasses of analytic functions},
url = {http://eudml.org/doc/197015},
volume = {136},
year = {2011},
}
TY - JOUR
AU - El-Ashwah, R. M.
AU - Aouf, M. K.
AU - Shamandy, A.
AU - Ali, E. E.
TI - Subordination results for some subclasses of analytic functions
JO - Mathematica Bohemica
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 136
IS - 3
SP - 311
EP - 331
AB - We introduce two classes of analytic functions related to conic domains, using a new linear multiplier Dziok-Srivastava operator $D_{\lambda ,\ell }^{n.q,s}$$(n\in \mathbb {N}_{0}=\lbrace 0,1,\dots \rbrace $, $q\le s+1$; $q, s\in \mathbb {N}_{0}$, $0\le \alpha <1$, $\lambda \ge 0$, $\ell \ge 0).$ Basic properties of these classes are studied, such as coefficient bounds. Various known or new special cases of our results are also pointed out. For these new function classes, we establish subordination theorems and also deduce some corollaries of these results.
LA - eng
KW - uniformly convex function; subordination; conic domain; Hadamard product; uniformly convex function; subordination; conic domain; Hadamard product
UR - http://eudml.org/doc/197015
ER -
References
top- Aghalary, R., Azadi, Gh., The Dziok-Srivastava operator and k-uniformly starlike functions, J. Inequal. Pure Appl. Math. 6 (2005), 1-7. (2005) Zbl1089.30009MR2150906
- Al-Oboudi, F. M., 10.1155/S0161171204108090, Internat. J. Math. Math Sci. 27 (2004), 1429-1436. (2004) Zbl1072.30009MR2085011DOI10.1155/S0161171204108090
- Al-Oboudi, F. M., Al-Amoudi, K. A., 10.1016/j.jmaa.2007.05.087, J. Math. Anal. Appl. 339 (2008), 655-667. (2008) MR2370683DOI10.1016/j.jmaa.2007.05.087
- Aouf, M. K., Mostafa, A. O., Some properties of a subclass of uniformly convex functions with negative coefficients, Demonstratio Mathematica 61 (2008), 353-370. (2008) Zbl1159.30307MR2419912
- Aouf, M. K., Mostafa, A. M., 10.1007/s00013-009-2984-x, Arch. Math. 92 (2009), 279-286. (2009) Zbl1165.30313MR2496680DOI10.1007/s00013-009-2984-x
- Aouf, M. K., Murugusundarmoorthy, G., On a subclass of uniformly convex functions defined by the Dziok-Srivastava operator, Austral. J. Math. Anal. Appl. 5 (2008), 1-17. (2008) MR2383651
- Attiya, A. A., 10.1016/j.jmaa.2005.02.056, J. Math. Anal. Appl. 311 (2005), 489-494. (2005) MR2168412DOI10.1016/j.jmaa.2005.02.056
- Bulboaca, T., Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca (2005). (2005)
- Bernardi, S. D., 10.1090/S0002-9947-1969-0232920-2, Trans. Amer. Math. Soc. 135 (1969), 429-446. (1969) Zbl0172.09703MR0232920DOI10.1090/S0002-9947-1969-0232920-2
- Bharati, R., Parvatham, R., Swaminathan, A., On subclasses of uniformly cunvex functions and corresponding class of starlike functions, Tamkang J. Math. 28 (1997), 17-32. (1997) MR1457247
- Catas, A., On certain classes of -valent functions defined by multiplier transformations, Proceedings of the International Symposium on Geometric Function Theory and Applications: GFTA 2007 Proceedings (İstanbul, Turkey; 20-24 August 2007) (S. Owa, Y. Polatoğlu, Eds.), pp. 241-250, TC İstanbul Kűltűr University Publications, Vol. 91, TC İstanbul Kűltűr University, İstanbul, Turkey (2008). (2008)
- Choi, J. H., Saigo, M., Srivastava, H. M., 10.1016/S0022-247X(02)00500-0, J. Math. Anal. Appl. 276 (2002), 432-445. (2002) Zbl1035.30004MR1944360DOI10.1016/S0022-247X(02)00500-0
- Dziok, J., Srivastava, H. M., 10.1016/S0096-3003(98)10042-5, Applied Math. Comput. 103 (1999), 1-13. (1999) MR1686354DOI10.1016/S0096-3003(98)10042-5
- Frasin, B. A., Subordination results for a class of analytic functions defined by linear operator, J. Inequal. Pure. Appl. Math. 7 (2006), 1-7. (2006) MR2268588
- Goodmen, A. W., 10.4064/ap-56-1-87-92, Ann. Polon. Math. 56 (1991), 87-92. (1991) DOI10.4064/ap-56-1-87-92
- Kanas, S., Wisniowska, A., 10.1016/S0377-0427(99)00018-7, Comput. Appl. Math. 105 (1999), 327-336. (1999) Zbl0944.30008MR1690599DOI10.1016/S0377-0427(99)00018-7
- Kanas, S., Wisniowska, A., Conic domains and starlike functions, Rev. Roum. Math. Pures Appl. 45 (2000), 647-657. (2000) Zbl0990.30010MR1836295
- Kanas, S., Yuguchi, T., Subclasses of k-uniformly convex and starlike functions defined by generalized derivative II, Publ. Inst. Math. 69 (2001), 91-100. (2001) MR1847833
- Libera, R. J., 10.1090/S0002-9939-1965-0178131-2, Proc. Amer. Math. Soc. 16 (1965), 755-758. (1965) MR0178131DOI10.1090/S0002-9939-1965-0178131-2
- Livingston, A. E., 10.1090/S0002-9939-1966-0188423-X, Proc. Amer. Math. Soc. 17 (1966), 352-357. (1966) Zbl0158.07701MR0188423DOI10.1090/S0002-9939-1966-0188423-X
- Ma, W., Minda, D., 10.4064/ap-57-2-165-175, Ann. Polon. Math. 57 (1992), 165-175. (1992) Zbl0760.30004MR1182182DOI10.4064/ap-57-2-165-175
- Miller, S. S., Mocanu, P. T., 10.1307/mmj/1029002507, Michigan Math. J. 28 (1981), 157-171. (1981) Zbl0439.30015MR0616267DOI10.1307/mmj/1029002507
- Miller, S. S., Mocanu, P. T., Differential Subordinations: Theory and Applications, Series of Monographs and Texbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker, New York (2000). (2000) Zbl0954.34003MR1760285
- Murugusundaramoorthy, G., Magesh, N., A new subclass of uniformly convex functions and a corresponding subclass of starlike functions with fixed second coefficient, J. Inequal. Pure Appl. Math. 5 (2004), 1-20. (2004) Zbl1059.30010MR2112438
- Noor, K. I., Noor, M. A., 10.1006/jmaa.1999.6501, J. Math. Anal. Appl. 238 (1999), 341-352. (1999) Zbl0934.30007MR1715487DOI10.1006/jmaa.1999.6501
- Prajapat, J. K., Raina, R. K., Subordination theorem for a certain subclass of analytic functions involving a linear multiplier operator, Indian J. Math. 51 (2009), 267-276. (2009) Zbl1178.30017MR2537946
- Rogosinski, W., On the coefficients of subordinate functions, Proc. London Math. Soc. 48 (1943), 48-82. (1943) Zbl0028.35502MR0008625
- Ronning, F., On starlike functions associated with parabolic regions, Ann. Univ. Mariae Curie-Sklodowska Sect. A 45 (1991), 117-122. (1991) MR1322145
- Ronning, F., 10.1090/S0002-9939-1993-1128729-7, Proc. Amer. Math. Soc. 118 (1993), 189-196. (1993) MR1128729DOI10.1090/S0002-9939-1993-1128729-7
- Rosy, T., Murugsundarmoorthy, G., Fractional calculus and its applications to certain subclassof uniformly convex functions, Far East J. Math. Sci. 15 (2004), 231-242. (2004) MR2133425
- Rosy, T., Subramanian, K. G., Murugsundarmoorthy, G., Neighbourhoods and partial sums of starlike functions based on Ruscheweyh derivatives, J. Inequal. Pure. Appl. Math. 4 (2003), 1-19. (2003) MR2051565
- Salagean, G. S., Subclasses of univalent functions. Complex Analysis---Fifth Romanian-Finish Seminar, Part I, Bucharest, 1981. Lecture Notes in Math., Vol. 1013, Springer, Berlin, 1983, pp. 362-372, . MR0738107
- Singh, S., 10.1155/S0161171200004634, Internat. J. Math. Math. Sci. 24 (2000), 433-435. (2000) DOI10.1155/S0161171200004634
- Singh, S., 10.1155/S0161171200004634, Internat. J. Math. Math. Sci. 24 (2004), 433-435. (2004) MR1781509DOI10.1155/S0161171200004634
- Srivastava, H. M., Attiya, A. A., Some subordination result associated with certain subclasses of analytic functions, J. Inequal. Pure Appl. Math. 5 (2004), 1-6. (2004) MR2112435
- Srivastava, H. M., Karlsson, P. W., Multiple Gaussian Hypergeometric Series, Ellis Horwood Ltd., Chichester, Halsted Press (John Wiley & Sons), New York (1985). (1985) Zbl0552.33001MR0834385
- Srivastava, H. M., Mishra, A. K., 10.1016/S0898-1221(99)00333-8, Comput. Math. Appl. 39 (2000), 57-69. (2000) Zbl0948.30018MR1740907DOI10.1016/S0898-1221(99)00333-8
- Srivastava, H. M., Li, Shu-Hai, Tang, H., Certain classes of k-uniformly close-to-convex functions and other related functions defined by using the Dziok-Srivastava operator, Bull. Math. Anal. Appl. 3 (2009), 49-63. (2009) MR2578116
- Wilf, H. S., 10.1090/S0002-9939-1961-0125214-5, Proc. Amer. Math. Soc. vol 12 (1961), 689-693. (1961) MR0125214DOI10.1090/S0002-9939-1961-0125214-5
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.